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CHAPTER 1

Introduction

1.1 Motivation

Understanding electromagnetic waves in complicated, often small devices (com-
puter chips, mobile phones, optical switches and other micro-electronic equip-
ment) is a real challenge for engineers. These waves are described by the Maxwell
equations which provide an accurate mathematical model for electromagnetic
waves. Despite the great progress made in the theoretical understanding of
these equations and the development of numerical techniques, there is a clear
need for more accurate and efficient numerical methods for the Maxwell equa-
tions. In particular, they are of great importance in the design and analysis of
micro-electronic devices.

As a specific example let us consider a micro-resonator. This device consists of
a circular disk made of high refractive index material and the micro-resonator,
which is placed in between two waveguides, see Figure 1.1(a). Light of any
wavelength inserted at the upper-left port IN, see Figure 1.1(b), is confined and
travels through the upper waveguide until it gets slightly disturbed in its evanes-
cent field by the presence of the resonator. Part of the light is trapped in the
disk which subsequently causes interference in the upper and lower waveguide.
The local interference can lead, depending on the wavelength, to two different
global states. First, in the so-called ‘in-resonance’ case, complete destructive
interference in the upper guide will transfer the light to the lower waveguide
where it will exit in the lower-left port OUT 2. In the more generic case, ‘put-
of-resonance’, the interference at the upper guide waveguide is only partially
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(b) Schematic top-view of a micro-resonator.

Figure 1.1: Schematic view of a micro-resonator (figure provided by M. Ham-
mer).

destructive. The light becomes only slightly disturbed and is largely transmit-
ted to OUT 1.

The wavelength dependent behaviour is the essential property of this device. It
makes it possible to filter out light of a specific wavelength. The actual perfor-
mance of optical devices depends critically on the material properties and on
the precise dimensions, where the distance between parts are in the order of
fractions of micrometers. Accurate simulation tools are indispensable to design
such devices, to find optimal parameter settings, and to determine critical tol-
erances for actual fabrication.

Another example where the numerical solution of the Maxwell equations is re-
quired is the study of electromagnetic wave propagation in caves and tunnels. It
is of great practical interest to antenna engineers to understand the behaviour
of electromagnetic waves in order to design reliable wireless communication
systems in such rough environments. Current wireless radio frequency (RF)



1.2 Existing methods 3

communication systems are not designed to operate reliably in enclosed envi-
ronments, such as cave-like structures, tunnels or subways. This prohibits the
quick deployment of wireless systems in caves and tunnels. If the propagation
properties of electromagnetic waves in a tunnel could be better characterized,
then a more robust communication system could be designed specifically for
operation in such environments. Thus, full electromagnetic wave simulations in
this type of environment are very useful to achieve this.

These applications are examples which motivate the research presented in this
thesis, which aims at developing new numerical tools for the solution of the
three dimensional Maxwell equations and to improve existing methods in various
ways.

1.2 Existing methods

To simulate complex electromagnetic wave problems the solution of the Maxwell
equations is required. In most real-life applications the analytic solution, i.e. the
solution expressed in terms of mathematical formulas, is not readily available. In
such situations numerical methods are indispensable tools to solve the Maxwell
equations approximately on computers. In this section we give a brief overview
of the main approaches to solve the Maxwell equations numerically.

1.2.1 Finite difference time domain method

In the past decades much effort has been put into solving the Maxwell equations
with various numerical methods. For a long period of time the famous finite-
difference time-domain (FDTD) method, initiated by Yee [109], has been used
for discretizing the Maxwell equations, both in space and time. The Yee scheme
is fully explicit in its structure and is originally designed for Cartesian regular
grids. For an analysis of the Yee and other FDTD schemes we refer to the book
of Taflove [99]. For the transverse magnetic (TM) fields, where the components
of the magnetic field H and the electric field E satisfy Hz = Ex = Ey = 0, the
Maxwell equations reduce to

∂tHx = −µ−1 ∂Ez

∂y
,

∂tHy = µ−1 ∂Ez

∂x
, (1.1)

∂tEz = ǫ−1

(
∂Hy

∂x
− ∂Hx

∂y

)

.
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Figure 1.2: An example of a stair-step approximation of a circular cylinder used
in many finite difference schemes. Dashed line: domain boundary.

The Yee scheme for (1.1), which uses a staggered mesh, reads:

Hx|n+1/2
i,j − Hx|n−1/2

i,j

∆t
= −µ−1

Ez|ni,j+1/2 − Ez|ni,j−1/2

∆y
,

Hy|n+1/2
i,j − Hy|n−1/2

i,j

∆t
= µ−1

Ez|ni+1/2,j − Ez|ni−1/2,j

∆x
,

Ez|n+1
i,j − Ez|ni,j

∆t
= ǫ−1




Hy|n+1/2

i+1/2,j − Hy|n+1/2
i−1/2,j

∆x
−

Hx|n+1/2
i,j+1/2 − Hx|n+1/2

i,j−1/2

∆y



 ,

where ∆x,∆y are the mesh sizes and ∆t the time step. The subindices indicate
the position in the spatial grid and the superindices show the time level.

Although the Yee scheme is simple in its structure and easy for coding purposes,
it has two main disadvantages. One is the lack of flexibility and accuracy in
dealing with problems on domains with curved boundaries and inhomogeneous
media. On curved boundaries, for instance, a common technique is to use so
called stair-step approximations, see Figure 1.2. But in this case the computa-
tional grid has to be very fine to approximate the boundary accurately, which
means that stair-step approximations are computationally very expensive [61].
The second drawback of the Yee scheme is the time integration method which
is explicit. As an explicit scheme it requires restrictions on the time step due to
the CFL (Courant-Friedrichs-Levy) condition to guarantee stability of the time
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Figure 1.3: An example of tetrahedral finite element mesh of a tube that has a
smaller inlet tube connected to the main one.

integration method. Many applications require locally fine meshes to capture
important geometrical details or physical phenomena and the time step restric-
tion then can be very severe. Hence many time integration steps are required,
which makes the scheme computationally expensive. These two problems can
be avoided, respectively, by using finite element methods and unconditionally
stable time integration schemes.

1.2.2 Finite element methods

In domains with a complex geometry finite element methods (FEM) are one
of the most common techniques for spatial discretizations of partial differential
equations (PDE). For a reader unfamiliar with finite element methods we refer
to [22, 31] and briefly mention that the main idea of the method is to divide
the domain into many small subdomains (elements), see Figure 1.3, and define
on each element a number of local basis functions. Then the unknown solution
of the PDE, which is transformed into a weak formulation, is approximated
by linear combinations of the basis functions on all elements. This method,
combined with modern mesh generation techniques, allows scientists to solve
partial differential equations on complex domains accurately and use them in
mathematical modelling.



6 Chapter 1: Introduction

The usual Lagrange or node-based finite elements are, however, in many appli-
cations not appropriate to represent electromagnetic fields (see e.g. [18], Section
6.3 and [97]). For example, with node-based finite elements it is hard to satisfy
the physical conditions at the interfaces between different materials. The rea-
son is that in this case the electromagnetic field E (or B) only has continuous
tangential (normal) components and discontinuous normal (tangential) compo-
nents, whereas node-based finite elements enforce full continuity. This generally
results in a physically incorrect solution. Another important reason not to use
node-based finite elements, is that they do not reflect the underlying geomet-
rical structure of the electromagnetic field at the discrete level. In particular,
they do not satisfy the discrete De Rham diagram [17, 57] .

In the last two decades a great deal of work has been done to overcome the prob-
lems arising from node-based elements. A major contribution has been made by
J.-C. Nédélec [76, 77]. He designed new types of finite elements which describe
the electromagnetic field in a better way as compared to existing methods. The
Nédélec elements have many attractive properties (e.g. automatic satisfaction
of the proper interface conditions between different materials and require less
smoothness than standard Lagrangian elements) and are nowadays a common
technique in computational electromagnetics.

More information about Nédélec elements (e.g. the construction of these ele-
ments, approximation and convergence properties) can be found in [57, 73].

A difficult question in practical situations is, however, the design of an accu-
rate computational mesh for the finite element discretization. This requires
knowledge about the error distribution and adaptive algorithms to construct a
(nearly) optimal mesh and discretization.

1.3 Objectives

The topics discussed in Section 1.2 have motivated the research documented in
this thesis and resulted in the following objectives:

• Construct an accurate and efficient, unconditionally stable time integra-
tion scheme for the Maxwell equations.

• Develop an accurate adaptation strategy for finite element discretizations
of the Maxwell equations.

• Analyze the Hamiltonian structure of the Maxwell equations and provide
a numerical scheme which is both globally and locally energy conservative.
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1.3.1 Unconditionally stable schemes

The first objective focuses on the construction of accurate and efficient, uncon-
ditionally stable time integration schemes.

Besides the Yee FDTD scheme [109] mentioned in the previous section, there
exist many other time stepping schemes for the Maxwell equations [48, 71, 68,
69, 35, 62, 63]. Often the time step in these schemes is restricted either due to
stability restrictions or accuracy requirements. In practice, however, one would
often like to have a time step free from stability restrictions since on nonuniform
finite element meshes or in inhomogeneous media the stability restriction can be
much more stringent than the wave resolution requirements. The need for bet-
ter stability motivated the development of a number of unconditionally stable
schemes which proved successful in the finite element framework [48, 71]. Stable
time stepping schemes for the Maxwell equations have also been of importance
in connection with finite difference spatial discretizations [68, 69, 35, 62, 63]. An
unconditionally stable scheme proposed by Gautschi [47] has recently received
attention in the literature for the solution of second order highly oscillatory
ODE’s [60, 59, 54]. In addition to being unconditionally stable, the scheme has
excellent wave resolution properties. The time discretization error of this scheme
is second order uniformly in the frequencies [59] and this allows to choose time
steps larger than the smallest wave length.

In this thesis we show that, using Krylov subspace techniques, the Gautschi
cosine scheme can be efficiently implemented for the three-dimensional Maxwell
equations discretized in space by Nédélec edge elements. This yields a Gautschi-
Krylov cosine scheme which proves to be very competitive, in terms of accuracy
and CPU time, to other implicit time-stable schemes for the time integration
of the Maxwell equations. Furthermore, the attractive properties of the new
scheme are confirmed on several test cases and compared with existing methods.

To achieve high computational efficiency, it is crucial for the new Gautschi-
Krylov scheme to properly choose the Krylov subspace dimension every time the
action of the matrix function is computed. We propose a new simple strategy
for controlling the Krylov subspace dimension which makes the Gautschi cosine
scheme an efficient time-integration method for the Maxwell equations.

1.3.2 Adaptive methods

The necessity of adaptive methods arises from the solution of the Maxwell equa-
tions when the solution contains structures with limited regularity (by regularity
we mean here smoothness of the solution), such as singularities near corners and
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non-convex edges. In such situations a finer mesh is required to obtain an accu-
rate solution. The solution of the Maxwell equations on a uniformly finer mesh,
especially for three-dimensional applications, will in general require too much
computational effort due to the large number of unknowns. These complicated
structures can be efficiently modeled using hp-adaptive techniques, in which the
mesh is locally refined and coarsened (h-adaptation) or the polynomial order in
individual elements is adjusted (p-adaptation). In Figure 1.4 an approximately
uniform mesh and its corresponding h-adapted mesh near the re-entrant corner
in Fichera cube are shown. Examples of hp-adaptive techniques applied to the
Maxwell equations can be found in e.g. [28, 83, 84]. In simple cases one can
predict the regions where the mesh needs to be adapted, but a more general ap-
proach requires the use of a posteriori error estimates in which the local error is
predicted based on the properties of the numerical solution. General techniques
for a posteriori error estimation are discussed in e.g. [3, 43, 49], but providing
accurate a posteriori error estimates for the Maxwell equations still poses many
problems.

The most common a posteriori error estimators are residual based methods,
where the behavior of the (local) error is evaluated based on the estimated
(local) residual. For clarity let us consider a simple example of a residual based
a posteriori error estimator applied to the Laplace equations. Let u be the
solution of the Laplace equation on a domain Ω,

−∆u = f in Ω, (1.2a)

u = 0 on ∂Ω. (1.2b)

Let T be a tessellation of Ω with mesh size h and denote by uh the finite element
solution of (1.2) on this mesh. Then an explicit residual based a posteriori error
estimator reads

‖u − uh‖2 + ‖∇(u − uh)‖2 ≤ CQ(h, uh, f), (1.3)

where Q is a functional depending on the known data h, uh, f . In many appli-
cations (e.g. on anisotropic meshes) the estimate (1.3) is not sharp enough due
to large (or unknown) values of the constant C or an improper choice of the
functional Q. We encounter the same problems in residual based a posteriori
error estimation methods applied to the Maxwell equations. In these methods
the error bounds contain in general unknown coefficients, which also depend on
the wavenumber in the equations, and frequently result in unsharp estimates.

In this thesis we suggest another approach: the idea of implicit a posteriori
error estimates discussed for elliptic partial differential equations in [3] is still
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perfectly applicable to the Maxwell equations when properly formulated. In the
implicit error estimation approach a local problem is formulated for the error
function on each element (or a group of elements) with properly defined approx-
imate boundary conditions, which are solely based on the computed numerical
solution (for a detailed description see Chapter 4). Then the local problems for-
mulated for the error function are solved with a properly defined finite element
method. This is the main difference with explicit a posteriori error estimators
which only use the data provided by the numerical solution.

The success of the implicit a posteriori error estimation technique, however,
strongly depends on the proper definition of the boundary conditions and the
choice of the basis for the numerical solution of the local problems. We give
special attention to cases where the analytic solution is non-smooth and also
investigate the problem in computational domains with reentrant corners. In
various test cases we verify the performance of the implicit error estimator on
cubic elements and compare the results with existing methods.

Of course, cubic elements are not flexible enough for real life problems, because
it is nearly impossible to accurately approximate complex domains with cubic
elements. Therefore we have extended the implicit error estimation technique
to tetrahedral elements, which are very flexible to accurately model complex
domains. In Chapter 5 a proper finite element basis is given for the local prob-
lems on tetrahedral elements and an adaptive algorithm is developed. The
method is tested on various complex domains with reentrant corners and the
mesh generation procedure is performed with the Centaur [29] mesh generation
package. One of the advantages of the Centaur mesh generator is that it cre-
ates adaptive meshes without hanging nodes. Meshes without hanging nodes
are desirable for Nédélec type elements, otherwise these elements are not well
defined. Another desirable property of this mesh generator is that it avoids
the generation of elements with a large dihedral angle, which is important for
accuracy requirements.

1.3.3 Energy conservative discretization of the Maxwell

equations

Many dynamical systems, i.e. the Maxwell equations and the shallow-water
equations, can be written in a Hamiltonian form. Most of them are energy
conserving systems, which is directly linked to the Hamiltonian of these equa-
tions. The energy conserving properties imply that the change in the energy
in a bounded domain is equal to the power supplied to the system through
its boundary. In Chapter 6 we exploit the port-Hamiltonian structure of the
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Figure 1.4: Meshes for Fichera cube domain. Left: A cut of the initial mesh.
Right: A cut of an adapted mesh.

Maxwell equations and try to design energy conservative numerical algorithms
which also provide the correct energy flow through the interfaces between neigh-
boring elements. For this purpose we formulate the Maxwell equations in terms
of the electric and magnetic fields and analyze a discretization of the Maxwell
equations using Whitney 1-forms, which provide a locally and globally energy
conservative scheme at the discrete level. For the time discretization we apply
the well known leap-frog symplectic time integration scheme which preserves, in
the absence of a source term, the discrete energy exactly. The method is tested
for a simple example on meshes with tetrahedral elements.

1.4 Outline of this thesis

This thesis is the result of a four year Ph.D. project carried out at the University
of Twente. The main results of this project are presented in the thesis. A short
description of each chapter is as follows:

• A brief introduction to the Maxwell equations and some properties of
electromagnetic waves are presented in Chapter 2.

• The Gautschi time integration scheme is presented in Chapter 3. A de-
tailed description is given for the matrix-function evaluation which is an
essential part of this scheme. The stability and dispersion properties of
the Gautschi scheme are investigated in detail and its performance is com-
pared with some existing methods.



1.4 Outline of this thesis 11

• In Chapter 4 an implicit a posteriori error estimation technique is formu-
lated. The well posedness of the local equations for the error function
on an element or patch of elements is proven. We verify the method on
cubic elements and demonstrate the superior performance of our method
compared to some existing methods.

• In Chapter 5, based on the theoretical results from Chapter 4, an implicit
a posteriori error estimation technique is applied to the Maxwell equations
on meshes with tetrahedral elements. An adaptive algorithm is presented
using the Centaur [29] mesh generation package. The performance of the
adaptive algorithm is verified on various test cases including non-convex
domains.

• In Chapter 6 we first discuss the general theory of the Stokes-Dirac struc-
ture and the Hamiltonian formulation for a general class of PDE’s is given.
As a particular example of these equations we consider the Maxwell equa-
tions. The geometrical structure of the Maxwell equations is analyzed
at the discrete level by means of Whitney forms. We show that the dis-
cretization of the electromagnetic fields with appropriate discrete differ-
ential forms preserves many important properties of the physical system,
in particular energy conservation.

• In the final chapter conclusions and a brief outlook of the thesis are given.





CHAPTER 2

The Maxwell equations

All the mathematical sciences are founded
on relations between physical laws and laws
of numbers, so that the aim of exact science
is to reduce the problems of nature to the
determination of quantities by operations
with numbers.

James Clerk Maxwell
(1831-1879)

In 1873 J. C. Maxwell founded the modern theory of electromagnetism with the
publication Treatise on Electricity and Magnetism, where the equations that
now bear his name are formulated. These equations consist of two pairs of
coupled partial differential equations describing six fields. Together with the
material dependent constitutive relations and boundary conditions the Maxwell
equations uniquely define the electromagnetic fields. In practice, there are many
types of boundary conditions which are typical for electromagnetic problems,
i.e. radiation conditions and perfectly conducting boundary conditions. In this
thesis we consider electromagnetic fields in a linear medium. If we consider the
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propagation of an electromagnetic field with a single frequency then the Maxwell
equations are reduced to their time-harmonic form.

2.1 The Maxwell equations

The macroscopic electromagnetic fields are related by the following Maxwell
equations:

∂tDs = ∇× Hs − Js, (Ampère’s law) (2.1a)

∂tBs = −∇× Es, (Faraday’s law) (2.1b)

∇ · Ds = ρs, (Gauss’s law) (2.1c)

∇ · Bs = 0, (Gauss’s law - magnetic) (2.1d)

where Es = (Ex, Ey, Ez) and Hs = (Hx,Hy,Hz) (Ds = (Dx,Dy,Dz) and
Bs = (Bx, By, Bz)) are the electric and magnetic fields (respectively, the electric
and the magnetic flux densities). Furthermore, Js and ρs denote respectively
the electric current and charge density (the latter is a space and time dependent
function). The following constitutive relations hold for linear media:

Ds = εEs, Bs = µHs, (2.2)

Js = σEs + J im
s , (Ohm’s law) (2.3)

where the dielectric permittivity ε (=ε0εr), the conductivity σ, and the magnetic
permeability µ (=µ0µr) are assumed to be space dependent positive definite ten-
sors. The imposed current density is denoted by J im

s . The free space dielectric
permittivity and magnetic permeability are defined by ε0 and µ0, respectively,
and are given by

ε0 ≈ 8.854 × 10−12 F/m (Farad per meter), (2.4a)

µ0 = 4π × 10−7 H/m (Henry per meter). (2.4b)

The dimensionless tensors εr and µr are material dependent and called rela-
tive permittivity and relative permeability, respectively. The conductivity σ is
measured in Siemens/meter (S/m) units. The subscript s indicates that the SI
units (International System of Units, from the French word Système Interna-
tional d´Unités) are used, see Table 2.1.

2.1.1 Material properties

The constitutive parameters ε and µ given in (2.2) define the relations between
the electromagnetic fields and are material dependent. For linear and homoge-
neous media, a more general form for the first equation in (2.2) can be written
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Table 2.1: SI units for electromagnetic quantities.

Quantity Units Name
Electric field Es V/m Volt per meter
Electric flux density Ds C/m2 Coulomb per square meter
Magnetic field Hs A/m Ampere per meter
Magnetic flux density Bs T Tesla
Electric current density Js A/m2 Ampere per square meter
Electric charge density ρs C/m3 Coulomb per cubic meter

as
Ds = (ε0(1 + χe))Es = ε0εrEs = εEs, (2.5)

where χe is a dimensionless quantity called electric susceptibility. A medium is
called linear if χe is independent of E and homogeneous if χe is independent of
the space coordinates.
Below we describe several cases.

1. Vacuum or free space: The relative permittivity εr and relative per-
meability µr in free space are one, i.e. εr = µr = 1. Then the constitutive
relations (2.2) reduce to

Ds = ε0Es, Bs = µ0Hs,

where ε0 and µ0 are given according to (2.4).

In free space the conductivity vanishes, σ = 0. The speed of light in free
space, denoted by c0, is given by c0 = 1√

ε0µ0
m/s.

2. Inhomogeneous, isotropic materials: The most commonly occurring
case in practice is that various different materials occupy the domain of
the electromagnetic field. In this case the domain is called inhomogeneous.
If the material properties εr and µr do not depend on the direction of
the electromagnetic fields and the material is linear then the constitutive
relations are given by (2.2), where the material properties εr and µr are
positive, bounded, scalar functions of position.

3. Inhomogeneous, anisotropic materials: In some applications the di-
electric permittivity ε and magnetic permeability µ are different for dif-
ferent directions of the electromagnetic fields. For instance, the vector
fields Ds and Es generally will have different directions. In this case the
domains are called anisotropic and the material properties ε, µ, and σ are
3 × 3 positive-definite matrix functions of the space coordinates.
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Material with zero conductivity is called dielectric, and with positive conduc-
tivity (σ > 0) is called a conductor. However, in this thesis we will consider
only dielectric materials. A detailed description of the electromagnetic theory
can be found in [30].

For some materials values of relative permittivities, relative permeabilities and
conductivities are given in Table 2.2(a), Table 2.2(b), and Table 2.2(c), respec-
tively.

2.1.2 Dimensionless Maxwell equations

To avoid problems with floating point arithmetic when working with very large
numbers, we apply the following space and time scaling:

x =
xs

L
, t =

c0

L
ts, (2.6)

where L is a reference length (expressed in meters), and c0 = (ε0µ0)
−1/2 ≈

3 · 108 m/s is the speed of light in vacuum. The scaling for ys and zs is done
similar to xs. Furthermore, we normalize the fields as

Es(xs, ts) =
H̃0

Z−1
0

E(x, t), Hs(xs, ts) = H̃0H(x, t),

Ds(xs, ts) = ε0
H̃0

Z−1
0

D(x, t), Bs(xs, ts) = µ0H̃0B(x, t),

Js(xs, ts) =
H̃0

L
J(x, t), ρs =

H̃0

Z−1
0

ρ,

where xs = (xs, ys, zs), x = (x, y, z), Z0 =
√

µ0/ε0 [Ohm] is the free space

intrinsic impedance, and H̃0 is reference magnetic field strength [A/m]. The
constitutive relations (2.2) in dimensionless form read:

D = εrE, B = µrH. (2.7)

The Maxwell equations (2.1) written for scaled quantities yield the following
dimensionless form:

∂tD = ∇× H − J , (2.8a)

∂tB = −∇× E, (2.8b)

∇ · D = ρ, (2.8c)

∇ · B = 0. (2.8d)
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Table 2.2: Material properties for some materials.

(a) Relative permittivities εr.

Material εr Material εr

Air 1.0 Polyethylene 2.3
Bakelite 5.0 Polystyrene 2.6
Glass 4–10 Porcelain 5.7
Mica 6.0 Rubber 2.3–4.0
Oil 2.3 Soil (dry) 3–4
Paper 2–4 Teflon 2.1
Parafin wax 2.2 Water (distilled) 80
Plexiglass 3.4 Seawater (distilled) 72

(b) Relative permeabilities µr.

Material µr Material µr

Ferromagnetic Paramagnetic

Nickel 250 Aluminum 1.000021
Cobalt 600 Magnesium 1.000012
Iron (pure) 4.000 Palladium 1.00082
Mumetal 100.000 Titanium 1.00018
Diamagnetic

Bismuth 0.99983
Gold 0.99996
Silver 0.99998
Copper 0.99999

(c) Conductivities σ.

Material σ (S/m) Material σ (S/m)
Silver 6.17 × 107 Fresh water 10−3

Copper 5.80 × 107 Distilled water 2 × 10−4

Gold 4.10 × 107 Dry soil 10−5

Aluminum 3.54 × 107 Transformer oil 10−11

Brass 1.57 × 107 Glass 10−12

Bronze 107 Porcelain 2 × 10−13

Iron 107 Rubber 10−15

Seawater 4 Fused quartz 10−17
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In the rest of this thesis we consider the Maxwell equations in dimensionless
form, unless indicated otherwise.

The divergence conditions (2.8c) and (2.8d) are direct consequences of the fun-
damental Maxwell equations (2.8a) and (2.8b) provided that the charge conser-
vation law holds:

∇ · J +
∂ρ

∂t
= 0. (2.9)

Indeed, if we take the divergence of (2.8a) and (2.8b) and using the relation
∇ · (∇× F) = 0 for a sufficiently smooth vector field F, we obtain

∂

∂t
∇ · B =

∂

∂t
(∇ · D − ρ) = 0.

Thus if (2.8c) and (2.8d) hold at initial time, they also hold at later time.

2.1.3 Interface conditions

To investigate the interface conditions of electromagnetic fields across two dif-
ferent materials let us first consider the integral form of the Maxwell equations
(2.8). We take the surface integral of (2.8a)–(2.8b) over both sides of an open
surface S with boundary contour C separating two media and apply the Stokes
theorem:

∮

C

H · dl =

∫

S

(J + ∂tD) · ds, (2.10a)

∮

C

E · dl = −
∫

S

∂tB · ds. (2.10b)

Similarly, we take the volume integral of (2.8c)–(2.8d) over a volume V with a
closed surface S and, using the divergence theorem, obtain

∮

S

D · ds =

∫

V

ρ dv, (2.10c)

∮

S

B · ds = 0. (2.10d)

Consider the diagram shown in Figure 2.1 for (2.10b) in the limiting case ∆h →
0. In this case the area of the parallelepiped abcd is infinitely small. Because
the magnetic flux density B is finite, the right hand side of (2.10b) tends to
zero, and thus

∮

C

E · dl =

∫ b

a

E1 · dl +

∫ d

c

E2 · dl = 0, (2.11)
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where the indices 1 and 2 refer to the fields in the different domains. It imme-
diately follows that E1 · ~ab+E2 · (− ~ab) = 0. If we denote the unit vector along
~ab by tab, then ~ab = tab∆w and we obtain

E1 · tab − E2 · tab = 0. (2.12)

Let us denote by n the normal vector at the interface pointing from Medium 1
into Medium 2. Then there is a vector t from the tangent space of S such that
tab = n × t. Substituting the last relation into (2.12), we obtain

(n × E1 − n × E2) · t = 0. (2.13)

Because ~ab is arbitrary, hence t is arbitrary too, we obtain

n × E1 − n × E2 = 0, (2.14)

i.e. the tangential component of the electric field is continuous across an inter-
face.

Similarly, we can show that in conducting materials with a finite conductivity
coefficient or in dielectric materials the right hand side of (2.10a) is finite, hence
it vanishes on an infinitely small parallelepiped abcd. Then we obtain

n × H1 − n × H2 = 0, (2.15)

i.e. the tangential component of the magnetic field H is continuous across an
interface. For the special case of an idealized perfect conductor, where the
conductivity σ → ∞, a surface current may exist, so that the first surface
integral on the right hand side of (2.10a) does not vanish on the infinitely
small parallelepiped abcd. This means that a surface current js can exist on
the boundary, normal to the area abcd. We conclude that for the case where
a surface current may exist, the interface condition for the magnetic field H

therefore is
n × (H1 − H2) = js,

where js is the surface current. In most applications the surface current van-
ishes (i.e. js = 0).

The interface conditions for the other electromagnetic fields can be obtained in
a similar manner.

We summarize the above results and obtain the following interface conditions
for the electromagnetic fields on the interface between two different media

n × (E1 − E2) = 0, (2.16a)
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Figure 2.1: Interface between two different media.

n · (B1 − B2) = 0, (2.16b)

n × (H1 − H2) = js, (2.16c)

n · (D1 − D2) = ρS , (2.16d)

where ρS is the surface charge density. The subscript i, i = 1, 2, refers to the
restriction of a vector field to medium i. The interface conditions (2.16) in the
presence of material discontinuities should be satisfied also in the discrete case.
In Chapter 6 we will discuss how to discretize the Maxwell equations in order
to preserve these interface conditions.

2.1.4 Second order PDE for the electric field

The Maxwell equations (2.8) can be formulated for the E or D and B or H

fields using the constitutive relations (2.7). For example, elimination of the
electric flux density D and the magnetic field H, yields

∂t(εrE) = ∇× (µ−1
r B) − J , (2.17)

∂tB = −∇× E. (2.18)

A possible drawback of this approach is that one has to work with both fields
and construct appropriate finite element approximations for each of the fields.
By differentiating (2.17) in time and taking the curl of (2.18), we can eliminate
B from the system (2.17)–(2.18) and obtain a second-order hyperbolic partial
differential equation for the electric field E

∂tt(εrE) + ∇× (µ−1
r ∇× E) = −∂tJ . (2.19)
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Of course, the choice of keeping E is arbitrary. One can formulate a second
order equation for the other fields, too.

2.1.5 Time-harmonic Maxwell equations

When the field quantities in the Maxwell equations are harmonically oscillating
functions in time with a single frequency, then the Maxwell equations (2.8) can
be reduced to the time-harmonic Maxwell system. In this case we can write the
electromagnetic fields in the following form

E(x, y, z, t) = ℜ(Ê(x, y, z)e−iωt), (2.20a)

D(x, y, z, t) = ℜ(D̂(x, y, z)e−iωt), (2.20b)

B(x, y, z, t) = ℜ(B̂(x, y, z)e−iωt), (2.20c)

H(x, y, z, t) = ℜ(Ĥ(x, y, z)e−iωt), (2.20d)

where i =
√
−1 and ℜ(·) denotes the real part of the expression in parenthe-

ses. The vector phasor Ê(x, y, z) (and similarly the other vector phasors) is a
vector field of position, but not of time. It contains information on the direc-
tion, magnitude, and phase of the corresponding electromagnetic field. Phasors
are in general complex-valued vector fields. Some authors consider the time
dependence for time-harmonic waves in the form eiωt. Of course, this choice is
arbitrary and, provided it is used consistently, gives no difficulties. The choice
made in (2.20) is standard in the mathematical literature.

It is clear that we should also consider now the current density and charge
density as time harmonic, hence we assume

J(x, y, z, t) = ℜ(Ĵ(x, y, z)e−iωt), (2.20e)

ρ(x, y, z, t) = ℜ(ρ̂(x, y, z)e−iωt). (2.20f)

After substitution of (2.20) in the Maxwell equations (2.8) we obtain the time-
harmonic Maxwell equations, i.e.

−iωD̂ = ∇× Ĥ − Ĵ , (2.21a)

−iωB̂ = −∇× Ê, (2.21b)

∇ · D̂ = ρ̂, (2.21c)

∇ · B̂ = 0, (2.21d)

where the time-harmonic charge density ρ̂ is given via the charge conservation
equation (2.9). Similar to the time-dependent case, we can write the Maxwell
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equations now as a second-order wave equation

∇× (µ−1
r ∇× Ê) − ω2εrÊ = iωĴ . (2.22)

2.1.6 Boundary conditions

The Maxwell equations described in the previous sections uniquely define the
electromagnetic fields in a finite domain if proper boundary conditions are im-
posed at the boundary of the domain. The boundary conditions usually depend
on the specific application. In this thesis for the verification of the numerical
results we usually consider perfectly conducting boundary conditions. This im-
portant case occurs when a dielectric material is inside of a perfect conductor.
Since the electric field E vanishes on a perfect conductor, we obtain the perfectly
conducting boundary condition from equation (2.16a)

n × E = 0 on Γ, (2.23)

where Γ = ∂Ω is the boundary of the dielectric domain Ω.

More information about different types of boundary conditions can be found in
e.g. [73].



CHAPTER 3

The Gautschi time stepping scheme for edge finite
element discretizations of the Maxwell equations

For the time integration of edge finite element discretizations of the three-
dimensional Maxwell equations, we consider the Gautschi cosine scheme where
the action of the matrix function is approximated by a Krylov subspace method.
First, for the space-discretized edge finite element Maxwell equations, the dis-
persion error of this scheme is analyzed in detail and compared to that of two
conventional schemes. Second, we show that the scheme can be implemented in
such a way that a higher accuracy can be achieved within less computational
time (as compared to other implicit schemes). We also analyzed the error made
in the Krylov subspace matrix function evaluations. Although the new scheme
is unconditionally stable, it is explicit in structure: as an explicit scheme, it
requires only the solution of linear systems with the mass matrix.

3.1 Introduction

This chapter deals with the numerical solution of the time dependent Maxwell
equations. In particular, we are interested in time integration of the three-
dimensional Maxwell equations discretized in space by Nédélec ’s edge finite
elements [76, 77]. Nédélec ’s edge and face elements have a number of attractive
properties (as e.g. automatic satisfaction of the proper continuity requirements
across the boundaries between different materials) and are a standard tool in
the numerical treatment of the Maxwell equations [73]. We emphasize, however,
that the time integration techniques presented in this chapter are applicable to
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any space-discretized second order wave equation(s).

Many time stepping schemes exist for the time integration of the space-discretized
Maxwell equations [35, 48, 62, 63, 68, 69, 71, 109]. Often the time step in these
schemes is restricted either due to stability restrictions or accuracy require-
ments, e.g. to resolve the waves. In practice, however, one often would like
to have a step size free from stability restrictions since on nonuniform finite
element meshes or in inhomogeneous media this restriction can be much more
stringent than the wave resolution requirements. The need for better stability
motivated the creation of a number of unconditionally stable schemes which
proved successful in the finite element framework [48, 71]. Stable time stepping
schemes for the Maxwell equations have been also of importance in connec-
tion with finite difference spatial discretizations [35, 62, 63, 68, 69]. A scheme
proposed by Gautschi [47] has recently received attention in the literature for
the solution of second order highly oscillatory ODE’s [54, 59, 60]. This scheme
contains a matrix function, is exact for linear equations with constant inho-
mogeneity and thus unconditionally stable. In each time step the product of
a matrix function with a given vector can be computed by Krylov subspace
methods [40, 41, 42, 58, 60, 67, 91, 100, 102]. The time error of the scheme is
of second order uniformly in the frequencies [59] and this allows to choose time
steps larger than the smallest wave length.

In this chapter we show that, using Krylov subspace techniques, the Gautschi
cosine scheme can be efficiently implemented for the three-dimensional Maxwell
equations discretized in space by edge elements. This yields a Gautschi-Krylov
cosine scheme which proves to be very competitive, in terms of accuracy and
CPU time, as compared to other implicit time-stable schemes for the time inte-
gration of the Maxwell equations.

Several authors study the dispersion properties of the discretized Maxwell equa-
tions. For the two-dimensional Maxwell equations discretized with the first order
edge finite elements, Monk and Parrot compare dispersion properties of several
conventional schemes [75]. A thorough analysis for three-dimensional problems
with different boundary conditions on an unstructured tetrahedral meshes is
carried out in [74]. For the dispersive properties of the higher order edge ele-
ments we refer to the paper of Ainsworth [2]. Dispersion properties of several
high order time integration schemes for transient wave equations are considered
by Cohen in [32]. In this chapter the attractive properties of the new scheme are
confirmed by a dispersion analysis done for the first order edge finite elements.
For comparison purposes, the dispersion analysis is also presented for two other
schemes, the conventional time-explicit leap-frog scheme and an uncondition-
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ally stable scheme of Lee, Lee and Cangellaris often referred to as the Newmark
β-scheme (in the sequel, the Newmark scheme) [48, 71].

To achieve high computational efficiency, it is crucial for the new Gautschi-
Krylov scheme to properly choose the Krylov subspace dimension every time
the action of the matrix function is computed. We propose a new simple strat-
egy for controlling the Krylov subspace dimension.

This chapter is organized as follows: Section 3.2 presents the Maxwell equa-
tions and their weak formulation, in Section 3.3 the Gautschi cosine scheme
and two other time stepping schemes are described, the Krylov subspace error
in the Gautschi-Krylov scheme and the stability of the scheme are analyzed
in Section 3.4, and dispersion errors of the three schemes are investigated in
Section 3.5. Finally, in the last section we demonstrate numerical results of a
comparison of the schemes.

3.2 Maxwell equations

Consider the time-dependent Maxwell equations on a bounded lossless domain
Ω ⊂ R3:

∂tDs = ∇× Hs − Js, (3.1)

∂tBs = −∇× Es, (3.2)

∇ · Ds = ρs, (3.3)

∇ · Bs = 0, (3.4)

where Es and Hs (Ds and Bs) are electric and magnetic fields (respectively,
the electric and the magnetic flux densities). Furthermore, Js and ρs denote
respectively the electric current and charge density (the latter is a space and
time dependent function). The subscript s indicates that the SI units are used.
Assume that the following boundary and initial conditions are given:

(n × Es)|Γ = 0, (3.5)

Es|ts=0 = Ē0, Hs|ts=0 = H̄0, (3.6)

where n is the outward normal vector to the domain boundary Γ = ∂Ω. The
following constitutive relations hold:

Ds = ǫEs, Bs = µHs, (3.7)

where the material properties the dielectric permittivity ǫ (=ǫ0ǫr) and the mag-
netic permeability µ(=µ0µr) are assumed to be space dependent tensors. The
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free space dielectric permittivity and magnetic permeability are defined by ǫ0
and µ0, respectively. The dimensionless tensors ǫr and µr are material depen-
dent and called relative permittivity and relative permeability, respectively.

3.2.1 Dimensionless Maxwell equations

To avoid problems with floating point arithmetic when working with very large
numbers, we apply the following space and time scaling:

x =
xs

L
, t =

c0

L
ts, (3.8)

where L is a reference length (expressed in meters), and c0 = (ǫ0µ0)
−1/2 ≈

3 · 108 m/s is the speed of light in vacuum. The scaling for ys and zs is done
similarly to xs. Furthermore, we normalize the fields as

Es(xs, ts) =
H̃0

Z−1
0

E(x, t), Hs(xs, ts) = H̃0H(x, t), Js(xs, ts) =
H̃0

L
J(x, t),

(3.9)
where xs = (xs, ys, zs), x = (x, y, z), Z0 =

√

µ0/ǫ0 [Ohm] is the free space

intrinsic impedance, and H̃0 is a reference magnetic field strength [A/m]. Equa-
tions (3.1),(3.2) and constitutive relations (3.7) written for the scaled quantities
yield the following dimensionless Maxwell equations:

ǫr∂tE = ∇× H − J , (3.10a)

µr∂tH = −∇× E. (3.10b)

Since the given boundary conditions are homogeneous, the dimensionless nor-
malization leaves them unchanged.

By differentiating (3.10a) in time and taking curl of (3.10b), we eliminate H

from the system (3.10) and obtain a second-order hyperbolic partial differential
equation for E

ǫr∂ttE + ∇× (µ−1
r ∇× E) = −∂tJ . (3.11)

Using (3.10a) we obtain the initial condition for the derivative of E:

∂tE(x, 0) = ǫ−1
r (−J(x, 0) + ∇× H(x, 0)). (3.12)

3.2.2 Weak formulation and finite element discretization

Defining the space

H0(curl,Ω) = {u ∈ L2(Ω)3| ∇ × u ∈ L2(Ω)3, (n × u)|Γ = 0},
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we arrive at the following Galerkin weak formulation of (3.11):

Find E ∈ H0(curl,Ω) such that ∀ w ∈ H0(curl,Ω)

∂tt(ǫrE,w) + (µ−1
r ∇× E,∇× w) = −(∂tJ ,w). (3.13)

Next, we introduce a tessellation of Ω (a hexahedral or tetrahedral mesh) with
N internal edges and denote by Wh the space of Nédélec ’s first order edge basis
functions:

Wh = span {wj(x) | all internal edges j = 1, . . . , N} ,

where each basis function wj(x) is defined with respect to the edge j as a linear
polynomial such that [73, 76]:

αi(wj) ≡
∫

edge i

wj · ti da =

{
0, if i 6= j,
1, if i = j,

where αi(wj) are the degrees of freedom associated with the edges and ti is the
unit tangent vector along the edge i. The electric field E is then approximated
as

E ≈ Eh =
N∑

j=1

ej(t)wj .

The discretized version of (3.13) then reads:

Find Eh ∈ Wh, such that ∀ W ∈ Wh

∂tt(ǫrEh,W ) + (µ−1
r ∇× Eh,∇× W ) = −(∂tJ ,W ). (3.14)

Denoting by e(t) a vector function with the entries ej(t), we can write (3.14) in
a matrix form as a system of ordinary differential equations (ODE’s)

Mǫe
′′ + Aµe = j(t) (3.15)

with

(Mǫ)ij = (ǫrwi,wj), (j(t))i = −(∂tJ ,wi), (3.16)

(Aµ)ij = (µ−1
r ∇× wi,∇× wj).

3.3 Time stepping schemes

In this section the Gautschi cosine time-stepping scheme is presented, along with
two other conventional time-stepping schemes which we use for comparison with
the Gautschi scheme. The first of the two schemes is the explicit staggered leap
frog scheme and the second one is an implicit scheme designed for finite element
discretizations of the Maxwell equations [48, 71].
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3.3.1 Leap frog scheme

The two-step staggered leap frog scheme for the semidiscrete Maxwell equations
(3.15) reads

Mǫ
en+1 − 2en + en−1

τ2
+Aµen = jn, (3.17)

where τ is the time step size and the superscripts refer to the time levels tn = nτ .
The scheme can be written in the form

Mǫe
n+1 + (τ2Aµ − 2Mǫ)e

n + Mǫe
n−1 = τ2jn. (3.18)

If the matrices Mǫ and Aµ are Hermitian, Mǫ is positive definite and Aµ is
positive semidefinite then the leap frog scheme is stable for

τ2 ≤ 4

λmax
,

where λmax is the maximum eigenvalue of the matrix M−1
ǫ Aµ (see Appendix 3.8.1).

The computational work of the scheme per time step mainly consists of one
matrix-vector multiplication with the matrix M−1

ǫ Aµ. This can be efficiently
done with the help of a sparse LU factorization of Mǫ (see Remark 3.1 in Sec-
tion 3.3.2).

3.3.2 Gautschi cosine scheme

Reduction of the semidiscrete Maxwell Equations to the normal form

We first transform the ODE system (3.15) into the form

y′′ + Ãǫ,µy = f(t), (3.19)

which we call the normal form. Computing a sparse LU factorization of Mǫ (see
Remark 3.1), we obtain

Mǫ = LǫUǫ.

Note that if ǫ is a symmetric positive definite tensor then the matrix Mǫ is sym-
metric positive definite, too, and we can take Uǫ = LT

ǫ (Cholesky factorization).

It is easy to see that the semidiscrete Maxwell equations (3.15) can be trans-
formed to the form (3.19) with Ãǫ,µ and y defined in one of the following ways:

Ãǫ,µ = U−1
ǫ L−1

ǫ Aµ, y = e, f = U−1
ǫ L−1

ǫ j, (3.20)

Ãǫ,µ = L−1
ǫ AµU−1

ǫ , y = Uǫe, f = L−1
ǫ j, (3.21)

Ãǫ,µ = AµU−1
ǫ L−1

ǫ , y = LǫUǫe, f = j, (3.22)
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where the inverse matrices will normally never be computed explicitly (see Re-
mark 3.1). Since we call (3.19) the normal form of (3.15), the transformations
(3.20), (3.21), (3.22) can respectively be called the left, two-sided and right
normalizations.

Remark 3.1. For the used edge finite element discretization a sparse LU (or
Cholesky) factorization of the mass matrix can usually be efficiently computed
even on fine meshes (at least, if the mesh is not too distorted [90] which is a
general requirement for edge finite elements). In practice, matrices L−1

ǫ and
U−1

ǫ will usually not be computed explicitly. This would be expensive because the
inverses will not be sparse in general. In fact, we will only need to compute the
action of the matrices L−1

ǫ and U−1
ǫ on a given vector and this can be done by

solving a linear system with Lǫ or Uǫ, as is usually done in preconditioning (see
e.g. Chapter 13.1 in [103] or Chapter 3.1 in [13]).

Note that the sparse LU factorization of the mass matrix is also required for
explicit schemes. The factorization is performed only once for the complete
time integration.

3.3.3 Formulation of Gautschi cosine scheme

Consider the variation of constant formula for the solution of (3.19):

y(t + τ) = cos(τÃ1/2
ǫ,µ )y(t) + Ã−1/2

ǫ,µ sin(τÃ1/2
ǫ,µ )y′(t) (3.23)

+

∫ τ

0

Ã−1/2
ǫ,µ sin((τ − s)Ã1/2

ǫ,µ )f(t + s)ds.

If f = const(t) then it follows from (3.23) that

y(t + τ) − 2y(t) + y(t − τ) = τ2ψ(τ2Ãǫ,µ)(−Ãǫ,µy(t) + f), (3.24)

where the function ψ is given by

ψ(x2) = 2
1 − cos x

x2
= 2

∫ 1

0

x−1 sin((1 − θ)x)dθ. (3.25)

The Gautschi cosine time stepping scheme [47, 59] for ODE system (3.19) is
based on relation (3.24):

yn+1 − 2yn + yn−1 = τ2ψ(τ2Ãǫ,µ)(−Ãǫ,µyn + fn). (3.26)

For a complete derivation of the scheme we refer to [59].
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Computation of ψ(τ2Ãǫ,µ)v

Since the matrix Ãǫ,µ is large and sparse, computation of ψ(τ2Ãǫ,µ)v by con-
ventional methods (see e.g. [52], Chapter 11) is hardly feasible. However, the
action of the matrix function ψ on a given vector at each time step can be
efficiently computed by a Krylov subspace method. Algorithms for this have
been developed and used in different contexts (we list in the chronological or-
der [102, 40, 67, 91, 41, 58, 42, 60], see also Chapter 11 in the recent book [103]).

Throughout this subsection we denote A = τ2Ãǫ,µ, A ∈ RN×N . Computation
of ψ(A)v for a given vector v is based on the Arnoldi or, when A = A∗, on
the Lanczos process (see e.g. [103, 92]). The Lanczos process involves the three-
term recurrences and is therefore cheaper, especially for large Krylov subspace
dimensions m. Since in this case m is not too large we use the Arnoldi process
which has better numerical stability properties.

Starting with A and v, the Arnoldi process generates after m steps orthonormal
vectors v1,v2, . . . ,vm+1 (with v1 = v/‖v‖) and a Hessenberg matrix H̄m ∈
R(m+1)×m such that (see [103, 92])

AVm = Vm+1H̄m, (3.27)

where Vm+1 ∈ RN×m+1 is a matrix with column vectors v1,v2, . . . ,vm+1 (and,
correspondingly, Vm is Vm+1 with the last column skipped). The vectors
v1,v2, . . . ,vm span the so-called Krylov subspace Km(A,v):

colspanVm = Km(A,v) := span{v, Av, . . . , Am−1v}.
Denote by Hm a matrix obtained from H̄m by deleting its last row. As usually
for the Arnoldi process, we expect that for some m

AVm ≈ VmHm, (3.28)

where the approximation improves (but not necessarily monotonically) as m
grows, see e.g. [103, 92]. Krylov subspace approximations to ψ(A)v are based
on the last relation: since in the Arnoldi process by construction v1 = v/‖v‖
we have

v = Vmy, y = ‖v‖e1,

with e1 being the first canonical basis vector in Rm, and (cf. (3.28))

ψ(A)Vmy ≈ Vmψ(Hm)y, y = ‖v‖e1,

so that the action of the matrix function on the given vector v is computed as

ψ(A)v ≈ ‖v‖Vmψ(Hm)e1. (3.29)
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We emphasize that dependence of the orthonormal basis v1,v2, . . . ,vm on v is
crucial to have a good approximation in (3.29).

In practice m is small (say 20), so that ψ(Hm) in (3.29) can easily be computed
by a standard method (see e.g. Chapter 11 in [52] and references therein). In
the experiments presented in this chapter, ψ(Hm) was computed with Matlab’s
built-in functions sqrtm and funm.

An important question is when to stop the Arnoldi process. One stopping
criterion is proposed in [60] and is based on controlling a norm of a generalized
residual. Unfortunately, in our experiments this approach appeared to be very
sensitive to the given tolerance which had to be tuned for every test problem.
For this reason we use another simple strategy: the Arnoldi process was stopped
as soon as

∥
∥
∥
∥
∥

yn+1
(m) − yn+1

(m−1)

yn+1
(m) − yn+1

(0)

∥
∥
∥
∥
∥
∞

≤ TOL, (3.30)

where yn+1
(m) is the numerical solution of the scheme (3.26) obtained with m steps

of the Arnoldi process, the division of the vectors is understood elementwise and
TOL is a tolerance (in all our experiments we used the value TOL = 10−2, this
value should be chosen according to the relative accuracy required for a specific
problem). By yn+1

(0) we denote the solution obtained by (3.26) with ψ(τ2Ãǫ,µ)

set to the identity matrix (so that no Arnoldi steps are done). Note that yn+1
(0)

coincides with the solution of the leap frog scheme (cf. (3.17)) and, thus, is a sec-
ond order time-consistent numerical solution. Stopping criterion (3.30) means
that the further increase of the Krylov subspace dimension m leads to no fur-
ther improvement in the accuracy as compared to the accuracy already obtained
with respect to the leap-frog solution yn+1

(0) . Note that this stopping criterion

can be shown to be a controller of the Krylov subspace error (see Section 3.4.2).

The described steps lead to the algorithm for the Gautschi-Krylov time integra-
tion scheme presented in Figure 3.1. The analysis of the Krylov subspace error
made in the matrix function evaluations and the stability of the new scheme are
presented in Section 3.4.

Since the work to compute the matrix function of the small matrix Hm is neg-
ligible, the overall computational work of the Gautschi scheme per time step is
dominated by m + 1 matrix-vector multiplications with the matrix Ãǫ,µ (m of
which are required by the Arnoldi process). This means an increase by a factor
of m + 1 as compared to the work per time step in the leap frog scheme.
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yn and yn−1 are given
v = Ãǫ,µyn − fn, β = ‖v‖2

yn+1
(0) = 2yn − yn−1 − τ2v

for m = 1, . . . ,
extend the Krylov basis by one Arnoldi step:

if(m = 1) then
v1 = v/β

initialize H̄1 =

[
0
0

]

else
extend H̄m−1 to H̄m by adding
a zero column and a zero row

endif
w = τ2Ãǫ,µvm

for i = 1, . . . ,m
hi,m = wT vi

w = w − hi,mvi

endfor
hm+1,m = ‖w‖2

vm+1 = w/hm+1,m

Vm+1 = [v1,v2, . . . ,vm,vm+1]
end of Arnoldi step
compute matrix function ψ(Hm)
u = Vm[βψ(Hm)e1]
yn+1

(m) = 2yn − yn−1 − τ2u

exit for-loop if condition (3.30) is fulfilled
endfor
yn+1 = yn+1

(m)

Figure 3.1: The Gautschi scheme with the Krylov subspace matrix function
evaluation and adaptive choice of the Krylov dimension.
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3.3.4 Newmark scheme

The following scheme proposed by J.-F. Lee, R. Lee, and A. Cangellaris (the
Newmark scheme, [71] and [48]) can be applied directly to the semidiscrete
Maxwell equations (3.15):

Mǫ
en+1 − 2en + en−1

τ2
+Aµ(

1

4
en−1 +

1

2
en +

1

4
en+1) = jn. (3.31)

This scheme can be written in the form

(Mǫ +
τ2

4
Aµ)en+1 = τ2jn−(

τ2

2
Aµ − 2Mǫ)e

n − (Mǫ +
τ2

4
Aµ)en−1, (3.32)

revealing that a linear system with matrix Mǫ + τ2

4 Aµ has to be solved at ev-
ery time step. For discretizations obtained on relatively coarse grids this can
be done by a sparse direct solver, by computing the LU factorization once and
reusing it at every time step. If a direct solution is not feasible, a preconditioned
Krylov iterative solver can be used.

The Newmark scheme is unconditionally (regardless of the time step τ) stable
[71].

3.3.5 One-step formulations of the three schemes

Each of the three schemes described in this section is a two-step scheme (i.e. it
requires numerical solutions on both n and n − 1 time levels to get the next time
level solution) but can be written in a one-step form. This is normally done by
introducing an auxiliary time derivative variable. These one-step formulations
can be used at the first time step where the two-step formulation would have
required the normally unknown value of e−1.

In the context of the Maxwell equations, a natural way to obtain a one-step for-
mulation of a time integration scheme is to consider the Maxwell equations as
the two first order equations. A possible drawback of this approach is that one
has to work with both fields and, hence, build up appropriate spatial discretiza-
tions for each of the fields. Thus, one of the benefits of treating the Maxwell
equations as a second order equation for one of the fields is then lost.

In this section we give the one-step formulations for all schemes. We derive it for
the Newmark scheme. The other two one-step formulations can be obtained in
a similar way. The formulations are given for an auxiliary variable but directly
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applicable to the two first order Maxwell equations, too. Introducing the time-
derivative auxiliary variable as

un+1/2 =
en+1 − en

τ
, (3.33)

we can write (3.31) as

Mǫ
un+1/2 − un−1/2

τ
+

1

2
Aµ

en−1 + en

2
+

1

2
Aµ

en + en+1

2
=

1

2
jn +

1

2
jn,

or, formally introducing the variable un, as

Mǫ
un − un−1/2

τ/2
+ Aµ

en−1 + en

2
= jn,

Mǫ
un+1/2 − un

τ/2
+ Aµ

en + en+1

2
= jn.

(3.34)

Writing the first half-step update here for the next time level (i.e. replacing n
with n + 1) we have

Mǫ
un+1 − un+1/2

τ/2
+ Aµ

en + en+1

2
= jn+1,

which, together with (3.33) and (3.34) leads to the following one-step formula-
tion of the Newmark scheme:

Mǫ
un+1/2 − un

τ/2
+ Aµ

en + en+1

2
= jn,

en+1 − en

τ
= un+1/2,

Mǫ
un+1 − un+1/2

τ/2
+ Aµ

en + en+1

2
= jn+1.

(3.35)

In this form the sequence of computations for the scheme is not immediately
clear and we rewrite it as:

(Mǫ +
τ2

4
Aµ)en+1 =

τ2

2
jn + (Mǫ −

τ2

4
Aµ)en + τMǫu

n

Mǫu
n+1 =

τ

2
jn+1 − τ

4
Aµ(en + en+1) + Mǫ

en+1 − en

τ
.

The one-step formulations for the leap frog and the Gautschi scheme can be
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obtained along the same lines (see also [59]):

One-step leap frog:







Mǫ
un+1/2 − un

τ/2
+ Aµen = jn,

en+1 − en

τ
= un+1/2,

Mǫ
un+1 − un+1/2

τ/2
+ Aµen+1 = jn+1.

One-step Gautschi:







un+1/2 − un

τ/2
= ψ(τ2Ãǫ,µ)(−Ãǫ,µyn + fn),

yn+1 − yn

τ
= un+1/2,

un+1 − un+1/2

τ/2
= ψ(τ2Ãǫ,µ)(−Ãǫ,µyn+1 + fn+1).

3.4 Analysis of the Gautschi-Krylov scheme

3.4.1 Krylov subspace approximation error

Theorem 3.2. Consider the homogeneous ODE system y′′ + Ay = 0. Then,
the solution of the Gautschi-Krylov scheme has the form:

yn+1 = −yn−1 + 2 cos(τA1/2)yn +

∫ τ

0

A−1/2 sin((τ − s)A1/2)g̃(s)ds

︸ ︷︷ ︸

=: δn, Krylov error

,

g̃(s) = −βhm+1,ms2vm+1e
T
mψ(s2Hm)e1,

(3.36)

where τ is the step size, m is the Krylov dimension, β = ‖Ayn‖, hm+1,m is
the (m + 1,m) entry of the matrix H̄m. The matrices H̄m, Hm, and the vector
vm+1 are defined in (3.27),(3.28), e1 and em are respectively the first and the
last canonical basis vectors in Rm, and ψ is given by (3.25).
For the exact Gautschi scheme (where the matrix function evaluations are done
exactly) relation (3.36) holds with δn ≡ 0.

Proof The proof (inspired by the analysis given in Section 4 of [100]) consists
of showing that the solution of the Gautschi-Krylov scheme is the exact solution
of a perturbed (inhomogeneous) ODE system.
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Without loss of generality, we shift for convenience the time variable such that
tn = 0, tn+1 = t and the Gautschi scheme can be written as

y(t) − 2y(0) + y(−t) = −t2ψ(t2A)Ay(0).

Substituting here function ψ as it is defined in (3.25) leads to relation (3.36)
with δn ≡ 0 which thus indeed holds for the exact Gautschi scheme. In the
Gautschi-Krylov scheme the right hand side is computed approximately with
Arnoldi or Lanczos process as

−t2ψ(t2A)Ay(0) = −βt2ψ(t2A)Vme1 ≈ −βt2Vmψ(t2Hm)e1,

where the matrix Vm is defined in (3.27),(3.28). The Gautschi-Krylov scheme
can thus be written as

y(t) − 2y(0) + y(−t) = −βt2Vmψ(t2Hm)e1. (3.37)

Denote (·)′ = d(·)/dt. Since

(t2ψ(t2Hm))′′ = (2H−1
m − 2 cos(tH1/2

m )H−1
m )′′ = 2 cos(tH1/2

m ),

differentiating equality (3.37) twice with respect to t yields

[y(t) + y(−t)]
′′

= −2βVm cos(tH1/2
m )e1.

We now use the Arnoldi relation (3.27) rewritten as

AVm = VmHm + hm+1,mvm+1e
T
m (3.38)

and write

− 2βVm cos(tH1/2
m )e1 = −2βVmHmH−1

m cos(tH1/2
m )e1

= −2β(AVm − hm+1,mvm+1e
T
m)H−1

m cos(tH1/2
m )e1,

so that

[y(t) + y(−t)]
′′

= −2β(AVm − hm+1,mvm+1e
T
m)H−1

m cos(tH1/2
m )e1. (3.39)

On the other hand, the right hand side of (3.37) can be transformed as

− βt2Vmψ(t2Hm)e1 = −2βVm(I − cos(tH1/2
m ))H−1

m e1

= −2βVmH−1
m e1 + 2βVm cos(tH1/2

m )H−1
m e1. (3.40)

Here the term VmH−1
m reads

VmH−1
m = A−1Vm + hm+1,mA−1vm+1e

T
mH−1

m ,
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this follows from the Arnoldi relation (3.38). Substituting the last expression
into (3.40) we get the following relation for the right hand side of the Gautschi-
Krylov scheme (3.37):

−2βA−1Vme1 − 2βhm+1,mA−1vm+1e
T
mH−1

m e1 + 2βVm cos(tH1/2
m )H−1

m e1.

Note that since the starting vector of the Arnoldi process is Ay(0) = βv1 (see
Figure 3.1 and recall that y(0) = yn), for the first term holds:

−2βA−1Vme1 = −2βA−1v1 = −2A−1Ay(0) = −2y(0)

and the Gautschi-Krylov scheme thus reads (cf. (3.37))

y(t) − 2y(0) + y(−t) = −2y(0) − 2βhm+1,mA−1vm+1e
T
mH−1

m e1

+ 2βVm cos(tH1/2
m )H−1

m e1.

Here multiplication of both sides with A results in

A(y(t) + y(−t)) = −2βhm+1,mvm+1e
T
mH−1

m e1 + 2βAVm cos(tH1/2
m )H−1

m e1

or, taking into account that cos(tH
1/2
m )H−1

m = H−1
m cos(tH

1/2
m ),

−2βAVmH−1
m cos(tH1/2

m )e1 = −A(y(t) + y(−t)) − 2βhm+1,mvm+1e
T
mH−1

m e1.

Replacing the first term of the right hand side in (3.39) by the right hand side
of the last relation, we obtain

[y(t) + y(−t)]
′′

= − A(y(t) + y(−t)) − 2βhm+1,mvm+1e
T
mH−1

m e1

+ 2βhm+1,mvm+1e
T
mH−1

m cos(tH1/2
m )e1,

and, using (3.25),

[y(t) + y(−t)]
′′

= −A(y(t) + y(−t)) − βhm+1,mt2vm+1e
T
mψ(t2Hm)e1

︸ ︷︷ ︸

=: g̃(t)

.

(3.41)

We now can get an analytic expression for u(t) ≡ y(t) + y(−t) by solving the
following initial-value problem:

u′′ = −Au + g̃(t), u(0) = 2y(0), u′(0) = 0, (3.42)

where the initial condition u′(0) = 0 holds because function u(t) is even. Ap-
plying a variation-of-constants formula to this initial-value problem gives

u(t) = cos(tA1/2)u(0) +A−1/2 sin(tA1/2)u′(0) +

∫ t

0

A−1/2 sin((t − s)A1/2)g̃(s)ds,

y(t) + y(−t) = 2 cos(tA1/2)y(0) +

∫ t

0

A−1/2 sin((t − s)A1/2)g̃(s)ds,
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which, after changing the time variable back (so that y(0) = yn, y(±t) = yn±1)
yields the required relation (3.36). ¥

3.4.2 Stopping criterion for the Arnoldi process

The proposed stopping criterion for the Arnoldi process (cf. (3.30)) can be shown
to be a controller of the Krylov subspace error specified by (3.36). To see this,
we assume that one time step is done with both the Gautschi-Krylov and the
exact Gautschi schemes and rewrite (3.36) as

yn+1
(m) = −yn−1 + 2 cos(τA1/2)yn + δn

(m),

yn+1
ex

= −yn−1 + 2 cos(τA1/2)yn.

where m is the Krylov subspace dimension, yn+1
(m) and yn+1

ex
are respectively

solutions of the Gautschi-Krylov and the exact Gautschi schemes and the Krylov
subspace error δn

(m) is given by (3.36):

δn
(m) = −βhm+1,m

∫ τ

0

s2A−1/2 sin((τ − s)A1/2)vm+1e
T
mψ(s2Hm)e1ds. (3.43)

This expression can not be readily used in practice for the evaluation of δn
(m)

due to the presence of the term A−1/2 sin((τ − s)A1/2)vm+1. Computation
of this matrix-vector product with the large matrix A is too expensive and
an approximation should be used. This can be done in different ways. For
example, one might take several first terms of the following series [46] as an
approximation:

A−1/2 sin((τ − s)A1/2) = (τ − s)I − 1

3!
(τ − s)3A +

1

5!
(τ − s)3A2 − . . . . (3.44)

Note that substituting this relation in (3.43) we could obtain another, more
detailed expression for the Krylov subspace error δn

(m) (for a similar analysis see
Lemma 4.1 in [100]). Instead of (3.44) one might also use some other approxima-
tions based, e.g., on Chebyshev polynomials. A more natural and efficient way
for estimating the Krylov subspace error is to use the same continued Arnoldi
process to get a reference solution (for a different time integration scheme, this
was proposed in [100]). More specifically, assume that, in addition to the m
steps of the Arnoldi process, another j steps of the process are done. Then

A−1/2 sin((τ − s)A1/2)vm+1 = A−1/2 sin((τ − s)A1/2)Vm+je
(m+j)
m+1

≈ Vm+jH
−1/2
m+j sin((τ − s)H

1/2
m+j)e

(m+j)
m+1 ,

(3.45)
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where e
(m+j)
m+1 is the (m + 1)th canonical basis vector in Rm+j . This approxima-

tion is accurate if |hm+j+1,m+j | is small enough (see (3.38) with m replaced by
m + j). Since hm+j+1,m+j ≈ 0 implies δn

(m+j) ≈ 0, the solution yn+1
(m+j) of the

Gautschi-Krylov scheme after m + j steps is then also accurate:

yn+1
(m+j) ≈ yn+1

ex
.

Hence, the value of δn
(m) with approximation (3.45) can be estimated as

δn
(m) = yn+1

(m) − yn+1
ex

≈ yn+1
(m) − yn+1

(m+j).

In the proposed stopping criterion of the Arnoldi process (cf. (3.30)), the dif-
ference yn+1

(m) − yn+1
(m+j) is evaluated in a special relative norm suitable for the

time stepping process. The choice j = 1 (also made in [100]) is appropriate
since in most cases the Arnoldi process for matrix function evaluations exhibits
a superlinear convergence [58, 100].

3.4.3 Stability of the Gautschi-Krylov scheme

The original Gautschi scheme (where the matrix function evaluations are per-
formed exactly) is exact for the linear ODE system y′′ + Ay = 0 and hence
is trivially stable. To show stability of the Gautschi-Krylov scheme, we follow
approach of [60] and consider perturbations εn ≡ yn − yn

ex
with respect to the

solution yn
ex

of the exact Gautschi scheme. Theorem 3.2 states that

yn+1
ex

= −yn−1
ex

+ 2 cos(τA1/2)yn
ex

,

or

[
yn+1

ex

yn
ex

]

=

[
2 cos(τA1/2) −I

I 0

] [
yn

ex

yn−1
ex

]

. (3.46)

Subtracting this relation from (3.36) we arrive at

εn+1 = −εn−1 + 2 cos(τA1/2)εn + δn,

or

[
εn+1

εn

]

=

[
2 cos(τA1/2) −I

I 0

] [
εn

εn−1

]

+

[
δn

0

]

.

For δn ≡ 0 this recursion coincides with the exact solution recursion (3.46) and
thus is stable if and only if the ODE system to be solved is stable. One may
understand stability in different ways [86, 50], for instance, we may require that

‖Gn‖ ≤ K, for n ≥ 0, nτ ≤ T, G =

[
2 cos(τA1/2) −I

I 0

]

, (3.47)

where K does not depend on τ and T is the final time, for some operator norm
‖ · ‖. We now assume that the exact Gautschi scheme is stable in this sense and
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thus (3.47) holds true.

Stability of the Gautschi-Krylov scheme follows immediately as it does for per-
turbed (inhomogeneous) difference schemes (see e.g. [86], Chapter 4 or [50], Sec-
tion 14). Although the Krylov approximation error δn can formally be made
arbitrarily small, the Gautschi-Krylov scheme remains stable even if we allow a
linear growth of the norm of δn with respect to the time step τ :

∥
∥
∥
∥

δn

0

∥
∥
∥
∥
≤ Cτ,

with C independent on τ . Denoting

En =

[
εn

εn−1

]

, δ̂
n

=

[
δn

δn−1

]

,

one can obtain a standard expression for two-level schemes

En = GnE0 + Gn−1δ̂
0

+ Gn−2δ̂
1

+ · · · + δ̂
n−1

,

from which the stability estimate follows:

‖En‖ ≤ ‖Gn‖ ‖E0‖ + ‖Gn−1‖n max
0≤i≤n−1

‖δ̂i‖

≤ K‖E0‖ + KnCτ ≤ K‖E0‖ + KCT.

3.5 Dispersion Analysis

For PDE’s of the wave type dispersion analysis is an important tool to under-
stand the error behavior of the scheme.

In this section we analyze and compare, for the edge finite element spatial
discretization on a uniform mesh, the numerical dispersion error for the three
schemes introduced in Section 3.3. For the analysis, we make the following two
assumptions:

1. Equation (3.11) is given in an infinite source free (J ≡ 0) region with
periodic boundary conditions:

ǫr∂ttE + ∇× (µ−1
r ∇× E) = 0. (3.48)

2. µr and ǫr are constant scalars.
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A vector field

E(x, y, z, t) = E0 exp(i(k · x − ωt)), where i =
√
−1, (3.49)

is a solution of (3.48) if the dispersion relation

ω2 = c2
rk

2 (3.50)

holds, where k = (k1, k2, k3) is the wave vector, x = (x, y, z), k = ‖k‖2 ≡√

k2
1 + k2

2 + k2
3 is the wave number, cr = 1/(

√
ǫrµr) is the scaled speed of light,

and ω is the angular frequency.

We consider the finite element discretization of (3.48) on a uniform paral-
lelepiped mesh with elements of size h × h × h, see Figure 3.2. The angles
∠DAB and ∠CAB are called deformation angles.

Remark 3.3. To avoid cumbersome expressions, we present many of the for-
mulas for the cubic case ∠DAB = ∠CAB = 90◦. If a formula is valid only
for the cubic elements, this is explicitly reported. However, the whole analy-
sis is valid for the general case and the resulting plots of the dispersion errors
are given also for the deformed mesh. Part of computations for the dispersion
analysis were done in Maple.

On this regular mesh the finite element matrices (3.16) take the form Mǫ =

ǫrhM and Aµ =
1

hµr
A, where the matrices M and A do not depend on the

element size h. This results in the following system of ODE’s

Me′′ +
c2
r

h2
Ae = 0. (3.51)

The time exact dispersion equation is

−ω2Me +
c2
r

h2
Ae = 0. (3.52)

We end up with an eigenvalue problem with large sparse matrices given in (3.51).
Since we are working on a uniform mesh, it is possible to reduce the problem
size as follows:

The expansion coefficients of the finite element approximation are ej(t) =
∫

edge j

E(x, t) · tjds. If the exact solution of (3.48) is given by (3.49) then

for any two parallel edges p and j the expansion coefficients satisfy

en+q
p = exp (i(k · ∆pj − ωqτ)) en

j , (3.53)
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D

BA

C

Figure 3.2: Deformed element with deformation angles ∠CAB and ∠DAB. The
angle ∠DAC = 90◦.

where the superscript indicates the time level, the subscript indicates the num-
ber of the edge to which the coefficient belongs, and ∆pj is a vector from the
midpoint of edge p to the midpoint of edge j.

3.5.1 Gautschi method

We analyze the Gautschi scheme under the assumption that the action of the
matrix function (3.25) on a given vector can be computed exactly (or very
accurately) so that the scheme is exact in time. This assumption is realistic
(see Section 3.6.3). Hence, we consider the time-accurate dispersion relation
(3.52) for the system (3.51), which gives us the following generalized eigenvalue
problem

−ω2Men +
c2
r

h2
Aen = 0. (3.54)

Denoting ϕ(ω) = −ω2 and η =
c2
r

h2
, we have

ϕ(ω)Men + ηAen = 0. (3.55)

Using the relations (3.53) it is not difficult to see that on a uniform grid the
equations (3.55) are the same (up to a constant C̃pj) for parallel edges, i. e. for
any two parallel edges p and j holds:

ϕ(ω)M(ap, :)e
n + ηA(ap, :)e

n = C̃pj(ϕ(ω)M(aj , :)e
n + ηA(aj , :)e

n) = 0,
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where M(aj , :) denotes ajth row of matrix M , and similarly for A. Therefore it
is sufficient to consider the equations corresponding to any three edges a1, a2,
a3 among which there are no parallel edges (see Figure 3.3).
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Figure 3.3: Three nonparallel edges a1, a2, a3 and the degrees of freedom (with
a local numbering) that appear in equation (3.54) for edge a1.

Let

X(t) =

∫

a1

E(x, t) · t da, Y (t) =

∫

a2

E(x, t) · t da, Z(t) =

∫

a3

E(x, t) · t da,

then using (3.53) all the other degrees of freedom (coefficients) in the whole
mesh can be expressed in terms of X,Y,Z.
The corresponding equation of edge a1 is

ϕ(ω)M(a1, :)e
n + ηA(a1, :)e

n = 0. (3.56)

The matrices M and A have a sparse structure because in (3.56) coefficients
only of those basis functions are present which have nonempty common support
with the basis function corresponding to the edge a1. On a cubic mesh we have

M(a1, :)e
n =

1

36
(1, 4, 1, 4, 16, 4, 1, 4, 1) · (ẽ1, ẽ2, ẽ3, ẽ14, ẽ15, ẽ16, ẽ27, ẽ28, ẽ29)

T ,

A(a1, :)e
n =

1

6
(−2,−2,−2, 1,−1,−1, 1, 1,−1, 4,−4, 1,−1,−2, 16,−2,

4,−4,−4, 4,−1, 1,−4, 4,−1, 1,−2,−2,−2, 1,−1,−1, 1)

· (ẽ1, ẽ2, ẽ3, . . . , ẽ32, ẽ33)
T . (3.57)
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Here the tilde sign is used to distinguish the local index with the global index,
for example ẽ15 = ea1

, ẽ19 = ea2
. Writing the relations similar to (3.56) for

edges a2 and a3 and using (3.53), we obtain a homogeneous system of equations

(ϕ(ω)F + ηG)





X
Y
Z



 = 0. (3.58)

On both cubic and deformed meshes the numerical dispersion relation of the
Gautschi scheme is

det (ϕ(ω)F + ηG) = 0, or (3.59)

det

(

−ω2F +
c2
r

h2
G

)

= 0,

where the 3 × 3 matrices F and G depend on the wave vector k and the mesh
size (entries of F and G are specified for the cubic mesh in Appendix 3.8.2 ).
One of the solutions of the dispersion relation is ω = 0, which does not represent
anything physical. The other solutions of (3.59) satisfy

(ωhh)2 =18
4−cos ξ3 cos ξ2−cos ξ1 cos ξ2 cos ξ3−cos ξ3 cos ξ1−cos ξ1 cos ξ2

(2 + cos ξ1) (2 + cos ξ2) (2 + cos ξ3)
c2
r,

(3.60)
where ξi = hki, i = 1, 2, 3, and ωh denotes the numerical angular frequency.
The exact phase velocity is given by cr = ω/k and the numerical phase velocity
is v = ωh/k. In Figure 3.4 a plot of the phase velocity error is given for cubic
elements with k3 = 0. For all the numerical experiments throughout this section
we assume that ǫr = µr = 1.
Under the assumption |kh| ≪ 1 the Taylor expansion of (3.60) shows

ωh = crk(1 +
1

24

k4
1 + k4

2 + k4
3

k2
h2 + higher order terms),

which means that the dispersion relation for the Gautschi scheme is satisfied up
to second order.

3.5.2 Leap frog scheme

Applying relation (3.53) to the leap frog scheme (3.17), we have

en+1 − 2en + en−1

τ2
=

exp(−iωτ)en − 2en + exp(iωτ)en

τ2

=
2(cos(ωτ) − 1)

τ2
en. (3.61)
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Figure 3.4: The phase velocity error of the Gautschi scheme for cubic elements.

Then the generalized eigenvalue problem of the leap frog scheme is

2(cos(ωτ) − 1)

τ2
Men +

c2
r

h2
Aen = 0. (3.62)

Introducing ϕ(ω) =
2(cos(ωτ) − 1)

τ2
and η =

c2
r

h2
in (3.55) we obtain the disper-

sion equation for the leap frog scheme

det

(
2(cos(ωτ) − 1)

τ2
F +

c2
r

h2
G

)

= 0, (3.63)

with the 3 × 3 matrices F and G defined as in (3.59). There are 3 roots, one is
zero which is non physical. The solution of (3.63) satisfies (on a cubic mesh)

cos(ωτ) = 1 − 2
χ1(τ, h,k)

χ2(τ, h,k)
, (3.64)

where

χ1(τ, h,k) = 9c2
rτ

2(4 − cos ξ1 cos ξ2 cos ξ3 − cos ξ1 cos ξ2 − cos ξ2 cos ξ3−
− cos ξ3 cos ξ1),

χ2(τ, h,k) = 2h2(2 + cos ξ1)(2 + cos ξ2)(2 + cos ξ3),

and ξi = hki, i = 1, 2, 3.
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According to the exact dispersion relation (3.50), we would like to have only
real solutions ω of (3.64). Otherwise, as it is clear from (3.49), the imaginary
part of ω will contribute to dissipation of the solution (damping if Im(ω) < 0 or
amplification if Im(ω) > 0, see e.g. [106]). The value of ω is real if and only if

∣
∣
∣
∣
1 − 2

χ1(τ, h,k)

χ2(τ, h,k)

∣
∣
∣
∣
≤ 1,

or, equivalently,

crτ

h
≤ 1

3

√

2(2 + cos ξ1)(2 + cos ξ2)(2 + cos ξ3)

4 − cos ξ1 cos ξ2 cos ξ3 − cos ξ1 cos ξ2 − cos ξ2 cos ξ3 − cos ξ3 cos ξ1
.

(3.65)
Since it is always true that

√

2(2 + cos ξ1)(2 + cos ξ2)(2 + cos ξ3)

4 − cos ξ1 cos ξ2 cos ξ3 − cos ξ1 cos ξ2 − cos ξ2 cos ξ3 − cos ξ3 cos ξ1
≥ 1,

for the inequality (3.65) to hold true it is sufficient to require that

crτ

h
≤ 1

3
, (3.66)

which gives stability condition on the uniform mesh. A more general stability
condition is given in Appendix 3.8.1.

Under the assumption |kh| ≪ 1 the Taylor expansion of (3.64) shows

ωτ = crk(1 +
1

24
c2
rk

2τ2 +
1

24

k4
1 + k4

2 + k4
3

k2
h2 + higher order terms),

where ωτ is the numerical angular frequency. In order to have spatial and tem-
poral error terms of the same order, we should take τ = O(h). This is a clear
disadvantage of leap frog compared to Gautschi.

In Figures 3.5–3.7, the absolute error of the angular frequency for the leap frog
scheme is shown in comparison with the Gautschi scheme for different values
of the time step τ and deformation angles θ (∠DAC = ∠BAC = θ, see Figure
3.2). Here, for simplicity, we assume k3 = 0. Note that in all figures the plots
of the leap frog scheme become increasingly similar (as τ decreases) to the plot
of the time-exact Gautschi scheme. We observe that reduction of the time step
beyond 0.002 does not give more accurate results because the spatial error is
dominant.
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Figure 3.5: Absolute value of the angular frequency errors for the leap frog
scheme with different time steps and for the Gautschi scheme, mesh size h =
1/20, deformation angle θ = π/2.
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Figure 3.6: Absolute value of the angular frequency errors for the leap frog
scheme with different time steps and for the Gautschi scheme, mesh size h =
1/20, deformation angle θ = π/3.
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Figure 3.7: Absolute value of the angular frequency errors for the leap frog
scheme with different time steps and for the Gautschi scheme, mesh size h =
1/20, deformation angle θ = π/4.
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3.5.3 Newmark scheme

The generalized eigenvalue problem for the Newmark scheme (3.31) is

2(cos(ωτ) − 1)

τ2
Men +

(cos(ωτ) + 1)

2

c2
r

h2
Aen = 0.

Introducing ϕ(ω) =
2(cos(ωτ) − 1)

τ2
and η =

cos(ωτ) + 1

2

c2
r

h2
in (3.55) we obtain

the dispersion equation for the Newmark scheme

det

(
2(cos(ωτ) − 1)

τ2
F +

(cos(ωτ) + 1)

2

c2
r

h2
G

)

= 0, (3.67)

where the 3× 3 matrices F and G are given as in (3.59). There are 3 roots, one
is zero. The solution of (3.67) satisfies (on a cubic mesh)

cos(ωτ) =
χ2(τ, h,k) − χ1(τ, h,k)

χ2(τ, h,k) + χ1(τ, h,k)
, (3.68)

where

χ1(τ, h,k) = 9c2
rτ

2(4 − cos ξ1 cos ξ2 cos ξ3 − cos ξ1 cos ξ2 − cos ξ2 cos ξ3−
− cos ξ3 cos ξ1),

χ2(τ, h,k) = 2h2(2 + cos ξ1)(2 + cos ξ2)(2 + cos ξ3),

and ξi = hki, i = 1, 2, 3.

Under the assumption |kh| ≪ 1 the Taylor expansion of (3.68) shows

ωτ = crk(1 − 1

12
c2
rk

2τ2 +
1

24

k4
1 + k4

2 + k4
3

k2
h2

+ O(h4) + O(τ4) + O(τ2h2) + higher order terms),
(3.69)

where ωτ denotes the numerical angular frequency. In order to make the spatial
and temporal error terms of the same order, we should take τ = O(h). We note
that the dispersion error of the Newmark scheme becomes fourth order accurate
if we choose

τ =

√

1

2c2
r

k4
1 + k4

2 + k4
3

k4
h, (3.70)

which can be called an optimum time step. We note that (3.69),(3.70) are only
valid on a cubic mesh.
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In Figures 3.8–3.10, the absolute error of the angular frequency for the Newmark
scheme is shown in comparison with the time-accurate Gautschi scheme for
different values of time step τ and deformation angles θ (∠DAC = ∠BAC = θ,
see Figure 3.2). Here again we assume for simplicity k3 = 0.
For the Newmark scheme we observe a similar convergence behavior as for the
leap frog scheme. Note that the plot for the step size τ = 0.025 in Figure 3.8
differs significantly from the the other plots in the figure due to the increase in
the error order observed in (3.69) (cf. (3.70) with k3 = 0 and k1 ≈ k2).

3.6 Numerical experiments

3.6.1 Test problem 1

This test problem is obtained by choosing an arbitrary vector field function
Ean(x, y, z, t) satisfying the boundary conditions, projecting it onto the finite
element subspace and substituting the projection into the semidiscrete system
(3.15). The source function j(t) is then chosen such that the finite element
projection of Ean is the exact solution of (3.15). Note that it is important to
use the exact solution of the semidiscrete system because the difference of this
solution with the computed numerical solution represents then solely the time
error (without the spatial discretization error).

More specifically, we consider the dimensionless Maxwell equations (3.11) in the
domain Ω = [0, 1] × [0, 1] × [0, 1] and we take

Ean(x, y, z, t) = v(t)Ē(x, y, z).

If ē is the finite element projection of the field Ē then

ean(t) = v(t)ē

is the exact solution of the semidiscrete ODE system (3.15) with

j(t) = (v′′Mǫ + vAµ)ē.

In our experiments we took

ǫr = 1, µr = 1.

v(t) =

Nω∑

i=1

cos ωit, Ē(x, y, z) =





sinπy sin πz
sinπx sin πz
sin πx sin πy



 . (3.71)

where the values of ωi are reported later separately for each of the test runs.
This test problem is well suited for studying the evolution of the time error,
since the exact solution is readily computable for any moment of time t.
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Figure 3.8: Absolute value of the angular frequency errors for the Newmark
scheme with different time steps and for the Gautschi scheme, mesh size h =
1/20, deformation angle θ = π/2. The plot for the time step τ = 0.025 reflects
the increase in the error order (cf. (3.70) with k3 = 0 and k1 ≈ k2).
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Figure 3.9: Absolute value of the angular frequency errors for the Newmark
scheme with different time steps and for the Gautschi scheme, mesh size h =
1/20, deformation angle θ = π/3.
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Figure 3.10: Absolute value of the angular frequency errors for the Newmark
scheme with different time steps and for the Gautschi scheme, mesh size h =
1/20, deformation angle θ = π/4.
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3.6.2 Test problem 2

This test problem differs from the previous one only by the choice of the exact
(reference) solution. The exact solution is obtained by any of the available
schemes run with an extremely small time step size τ . With this τ all schemes
produce numerical solutions which are practically exact in time but with the
same spatial error as the numerical solutions obtained for realistically large
τ . Such a testing approach is common in numerical time integration of space-
discretized PDE’s (see e.g. [96]). This test problem is convenient when one
wants to know the error at the final time.

3.6.3 The Krylov subspace dimension and the time error

Here we investigate how the choice of the Krylov subspace dimension in the
Gautschi scheme influences its time integration error. We are interested in the
evolution of the error in time and therefore use Test problem 1. The frequencies
ωi of the inhomogeneous term j(t) (cf. 3.71) are chosen as

ω1 = 1, ω2 = 10.

The results are presented in Figure 3.11. Here, the time error evolution of the
Gautschi scheme is shown for different fixed Krylov subspace dimensions m and
for the adaptive choice of m based on the condition (3.30). The time integra-
tion was done up to the final time T = 6 2π

maxi{ωi} corresponding to the 6 periods

of time. The shown error is the Euclidian norm of the difference between the
coefficients of the finite element basis expansions of the numerical and the exact
solutions.

Inspection of the plots in Figure 3.11 shows that there is a certain value of
m = m̃ such that increasing the Krylov subspace dimension beyond m̃ does not
lead to any improvement in time accuracy. In other words, even if we compute
the action of the matrix function on vectors very accurately the error does not
decrease. Thus, for m ≥ m̃ we have a scheme where the error caused by the
Krylov subspace approximation is negligible as compared to the time error of
the exact Gautschi scheme. The adaptive choice of m is able to catch the value
of m̃ very accurately: for example, for the upper plot (14 × 14 × 14 mesh) we
can see that m̃ ≈ 4 whereas the adaptive choice gave values m between 3 and 5.

The typical dimensions of the Krylov subspace, observed in practice, depend
on the time step size used. For the step sizes up to a factor two larger than
the CFL number (which is the maximal possible step size of the explicit leap
frog scheme) the Krylov dimension is usually 2. For larger realistic time step
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sizes values of m up to 12 can be observed. The values of m mildly grow as the
spatial mesh gets finer.

3.6.4 Computational work

We recall that on the uniform meshes the computational work per time step
in the Gautschi scheme is a factor m + 1 (with m being the Krylov subspace
dimension) more than for the leap frog scheme.

On uniform meshes the computational work of the Newmark scheme is difficult
to compare explicitly with those of the leap frog and Gautschi schemes. This is

because on uniform meshes the sparse LU factorization of the matrix Mǫ+
τ2

4 Aµ

in the Newmark scheme is more expensive than that of Mǫ, since the matrix Mǫ

is sparser due to orthogonality of some basis functions on the cubic elements.
This makes the Newmark scheme very expensive on finer meshes as compared
to the other two schemes. For this reason the results for the Newmark scheme
in this section are shown only for a coarser 10 × 10 × 10 mesh.

On the uniform meshes let us denote the computational work required for the

LU factorizations of the matrices Mǫ + τ2

4 Aµ and Mǫ as lu fac Newmark and
lu fac lf, respectively. The computational work for one matrix-vector multipli-

cation with the matrices Mǫ − τ2

4 Aµ and Aµ involved in the Newmark and leap
frog schemes is defined as mat vec Newmark and mat vec lf, respectively. The
computational work required for the LU solver for the schemes Newmark and
leap frog is denoted as lu sol Newmark and lu sol lf, respectively.

In contrast to the situation on the uniform meshes, the matrices Mǫ and Mǫ +
τ2

4 Aµ have the same sparsity structure on unstructured meshes, hence require
the same computational work for the LU factorization. Although the com-
putational work per time step in the Gautschi scheme is larger than in the
Newmark or the leap frog scheme, the Gautschi scheme appears to be more
efficient (see results of Section 3.6.5). Let us define a relative work required
for one LU factorization as lu fac, one matrix-vector multiplication as mat vec
and one LU solver as lu sol. It is clear that per time step the Newmark and
the leap frog schemes require mat vec+ lu sol and the Gautschi scheme requires
(m + 1)(mat vec + lu sol) operations.

If we denote the required computational work per time step for the cases de-
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Figure 3.11: Error evolution of the Gautschi scheme for 14× 14× 14 (top) and
24× 24× 24 (bottom) meshes for different Krylov subspace dimensions m. The
step size corresponds to 7 points per time period.
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Table 3.1: Computational work for the three schemes.

uniform mesh unstructured mesh

Gautschi T
τ (m + 1) · Qlf + lu fac lf T

τ (m + 1) · Q + lu fac

Newmark T
τ · QNewmark + lu fac Newmark T

τ · Q + lu fac

leap frog T
τ · Qlf + lu fac lf T

τ · Q + lu fac

scribed above as

Qlf = mat vec lf + lu sol lf ,

QNewmark = mat vec Newmark + lu sol Newmark,

Q = mat vec + lu sol,

then the overall computational work for all the schemes on the uniform and
unstructured meshes is given in Table 3.1, where T is the final time and τ is the
time step size.

On finer uniform or unstructured meshes the LU factorizations may require too
much computational efforts. In this case one could use an iterative solver for
the three schemes. In the context of the Arnoldi process used in the Gautschi
scheme this would mean that the action of M−1

ǫ is computed by an inner iterative

solver. Note that the matrix Mǫ + τ2

4 Aµ appearing in the Newmark scheme
usually requires more iterations of an iterative solver than the well-conditioned
mass matrix Mǫ [45]. Performance of the iterative solvers in all the schemes
can be improved by a suitable preconditioning (see [100] for preconditioning of
the Krylov subspace matrix function evaluations). On the other hand, the use
of approximate implicit schemes [19] or stabilized explicit schemes [105, 95, 96]
might be a good option here, too.

3.6.5 Comparisons of the three schemes

We compare now the time stepping errors at the final time and the CPU times
of the three schemes presented in Section 3.3. Since we are interested in time
errors at the final time, we use Test problem 2. The presented error values are
computed as

error =

∥
∥
∥
∥

yn̄ − yn̄
exact

yn̄
exact + ǫC

∥
∥
∥
∥
∞

, (3.72)

where the division of the vectors is understood element-wise, yn̄ and yn̄
exact are

the numerical and the exact (reference) solutions at the final time T = n̄τ = 50,
and ǫC is the machine epsilon.
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Uniform cubic mesh

In the experiments presented in this section, a uniform cubic mesh was used.
In the first test, the frequencies ωi of the source term j(t) were taken to be
homogeneously distributed:

Nω = 101, wi evenly distributed in [1, 10], i = 1, . . . , 101. (3.73)

The results are presented in Figure 3.12. We see that all the schemes clearly
exhibit second order time accuracy. The peculiar drop in the error-versus-τ plot
of the Newmark scheme, is caused by the increase in the error order observed
in (3.69), (3.70).

The nonmonotonicity seen on the error-versus-CPU time plots of the Gautschi
scheme are characteristic for the scheme: smaller time step sizes result in reduc-
tion of the Krylov dimension m which makes the scheme significantly cheaper.
There is, thus, an optimal time step size for which the overall computational
work is minimal. As one can see in Figure 3.12, the Gautschi and Newmark
schemes lose to the leap frog scheme in performance. This is to be expected
since we work on a uniform mesh in a domain with homogeneous ǫr and µr.

Because of different sparsity patterns of the matrices Mǫ + τ2

4 Aµ and Mǫ the
plots versus the computational work in Figure 3.13 are presented only for the
leap frog and the Gautschi schemes.

Very similar results were obtained for the case where

Nω = 101, ωi evenly distributed in [1, 2], i = 1, . . . , 100, ω101 = 10. (3.74)

Here all the schemes yield errors which are approximately a factor 103 smaller
than for the homogeneous distribution of ωi (3.73). In this the case the error-
versus-τ dependence of the Newmark scheme is monotone.

We now present the performance of the Gautschi scheme on a finer mesh 40 ×
40× 40 with higher, as compared to (3.73) and (3.74), frequencies in the source
term:

Nω = 103, wi evenly distributed in [1, 2], i = 1, . . . , 100, (3.75)

ω101 = 10, ω102 = 24, ω103 = 25.

In Figure 3.14 the errors at the final time are given against the corresponding
step sizes and computational work. For this mesh, the sparse LU factorization

of the matrix Mǫ + τ2

4 Aµ in the Newmark scheme is prohibitively expensive and
the conjugate gradient iterative solver is used.
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Figure 3.12: Uniform mesh. Errors at the final time against the correspond-
ing step sizes and the required CPU times for the homogeneously distributed
frequencies in the source term (cf. (3.73)).
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Figure 3.13: Uniform mesh. Errors at the final time against the corresponding
computational work for homogeneously distributed frequencies in the source
term. The work is measured in the Qlf units (see Section 3.6.4).
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Figure 3.14: Uniform mesh. Errors at the final time against the corresponding
step sizes for clustered distribution of frequencies in the source term, see (3.75).
The work is measured in the Qlf units (see Section 3.6.4).
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Figure 3.15: A cut of the unstructured mesh used for the experiment.

Unstructured tetrahedral mesh

In this example, Test problem 2 with the homogeneously distributed frequen-
cies in the source term (cf. (3.73)) is solved on a unstructured tetrahedral mesh
generated by the Centaur mesh generator. In the mesh used (see Figure 3.15),
the ratio between longest and shortest edge is about 17. Although the mesh
is rather coarse, the time step of the leap frog scheme is restricted for stability
reasons to the relatively small time step 0.0155 (which is approximately a fac-
tor two smaller than the stability time step restriction of a uniform mesh with
roughly the same number of degrees of freedom).

The results of the experiment are given in Figure 3.16. Note the irregular con-
vergence pattern of the Newmark scheme which is apparently caused by effects
of the MATLAB/UMFPACK sparse direct solver used in the scheme (the accu-
racy of the solver is compromised to retain sparsity in the LU factors).

It is evident that to achieve the same accuracy both the explicit leap frog scheme
and the implicit Newmark scheme require much smaller time steps than the
Gautschi scheme and their computational times are bigger than that of the
Gautschi scheme.

In Figure 3.17 we compare accuracies delivered by the schemes versus required
computational work (see Section 3.6.4). It is clear from this figure that on the
unstructured mesh the Gautschi scheme appears to be the most efficient.
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Figure 3.16: Unstructured mesh. Errors at the final time against the correspond-
ing step sizes and the required CPU times for the homogeneously distributed
frequencies in the source term (cf. (3.73)). Left plots: the error is measured as
in (3.72). Right plots: the error is measured as ‖yn̄ − yn̄

exact‖/‖yn̄
exact‖.



64 Chapter 3: The Gautschi time stepping scheme

10
2

10
4

10
6

10
0

10
2

10
4

10
6

work

e
rr

o
r 

a
t 
fi
n
a
l 
ti
m

e

 unstructured mesh

Gautschi
leap−frog
Newmark

Figure 3.17: Unstructured mesh. Errors at the final time against the corre-
sponding computational work for homogeneously distributed frequencies in the
source term. The work is measured in the Q units (see Section 3.6.4).

Exactness of the Gautschi scheme for the slowly varying inhomoge-
neous term

The Gautschi scheme is known to be exact for the constant inhomogeneous
term j(t) [47, 59]. To see whether this is the case for our Krylov subspace
implementation of the scheme, we take in these two tests (i) zero and (ii) very
small values of ωi:

(i) Nω = 1, ω1 = 0, (3.76)

(ii) Nω = 3, ω1 = 10−5, ω2 = 2.23 · 10−5, ω3 = 8 · 10−6. (3.77)

The results obtained on the uniform cubic mesh for zero values of ωi are pre-
sented in Figure 3.18. Similar, practically undistinguishable plots were obtained
for the very small frequencies (3.77). Note the superconvergence effects observed
for the leap frog and the Newmark schemes on the 10×10×10 mesh: the schemes
are almost fourth order accurate. The results clearly show that the Gautschi
scheme with adaptive choice of the Krylov subspace dimension is practically
exact for these problems.
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Figure 3.18: Errors at the final time against the corresponding step sizes and
the required CPU times for a constant source term (cf. (3.76)).
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3.7 Conclusions and suggestions for future re-

search

It is shown that the Gautschi cosine scheme can be efficiently implemented for
edge finite element discretizations of the three-dimensional Maxwell equations.
The implementation involves a sparse LU (or Cholesky) factorization of the
mass matrix which is also required for explicit time stepping schemes and in
most cases can be done efficiently. When the direct solution is not feasible the
action of the inverse of the mass matrix could also be computed by an iterative
solver.

We also proposed a simple strategy for the adaptive choice of the Krylov dimen-
sion. This strategy proves to be successful in our experiments, in particular, the
error triggered by the Krylov subspace approximation appears negligible to the
time error. Moreover, the exactness of the Gautschi scheme for the constant
inhomogeneous term was observed in practice for our Gautschi-Krylov imple-
mentation. A backward error analysis of the Krylov subspace error was done
leading to an explicit formula for the error. This also provided an insight for
the stopping criterion used in the Arnoldi process. Furthermore, the stability
of the new scheme was proved.

Dispersion analysis presented in this chapter revealed superior properties of the
Gautschi scheme as compared to the leap frog and the Newmark scheme.

The presented numerical experiments demonstrate that the Gautschi scheme
is more efficient (in terms of the achieved accuracy and the required computa-
tional work) than the implicit Newmark scheme. The Gautschi scheme is much
more efficient than the explicit leap frog scheme and the Newmark scheme (i) on
nonuniform meshes or (ii) when the inhomogeneous source term is a slowly vary-
ing function of time.

A relevant future research topic would be an extension of the Gautschi-Krylov
scheme to the Maxwell equations with nonzero conductivity terms or absorbing
boundary conditions. In both cases the weak formulation (3.14) will contain a
first order time derivative. A possible approach here would be to use splitting
methods.

It would also be interesting to see how the Gautschi-Krylov scheme performs
with the recently developed matrix function preconditioning technique [100].

The presented results indicate that the Gautschi-Krylov scheme is a promising
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tool for efficient time integration of the Maxwell equations.

3.8 APPENDIX

3.8.1 Stability of the leap frog scheme

To derive a stability condition for the leap frog scheme we consider the homo-
geneous case j(t) = 0:

Mǫe
n+1 + (τ2Aµ − 2Mǫ)e

n + Mǫe
n−1 = 0, (3.78)

or in its equivalent form

en+1 + (τ2M−1
ǫ Aµ − 2I)en + en−1 = 0. (3.79)

In our analysis, we follow the standard approach based on diagonalizing the
matrices involved in the scheme (see e.g. [111]). Any solution of (3.79) can be
written as

en =
∑

m

γn
mαm, (3.80)

where αm’s are the eigenvectors corresponding to the eigenvalues (λm) of the
following eigenvalue problem

M−1
ǫ Aµx = λx. (3.81)

We assume that matrices Mǫ and Aµ are Hermitian, Mǫ is positive definite and
Aµ is positive semidefinite. This is guaranteed by the finite element discretiza-
tion provided that µ and ǫ have corresponding properties. The eigenvalues of
(3.81) are then nonnegative. Substitution of (3.80) into (3.79) yields

∑

m

γn+1
m αm + (τ2M−1

ǫ Aµ − 2I)
∑

m

γn
mαm +

∑

m

γn−1
m αm = (3.82)

=
∑

m

γn+1
m αm +

∑

m

γn
m(τ2λm − 2)αm +

∑

m

γn−1
m αm = 0.

which, due to the linear independence of the αm’s, implies

γn+1
m + (τ2λm − 2)γn

m + γn−1
m = 0, for all m. (3.83)

This recurrence is stable (i. e. |γn
m| ≤ 1) if and only if the roots ν1,2 of its

characteristic equation

ν2 + (τ2λm − 2)ν + 1 = 0 (3.84)
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do not exceed one in absolute value. The solution of (3.84) is

ν1,2 = 1 − τ2

2
λm ±

√

(1 − τ2

2
λm)2 − 1. (3.85)

A straightforward computation shows that the stability condition |ν1,2| ≤ 1 is
fulfilled if and only if

(1 − τ2

2
λm)2 − 1 ≤ 0, (3.86)

which, together with (3.85), necessarily means that |ν1,2| = 1. The solutions of
(3.86) satisfy

τ2 ≤ 4

λm
, for all m, (λm ≥ 0).

Then the stability condition for the leap frog scheme is

τ2 ≤ 4

λmax
,

where λmax is the maximum eigenvalue of the matrix M−1
ǫ Aµ.

3.8.2 Dispersion relation matrices F and G

The matrices F and G in (3.59) on a cubic mesh with element size h × h × h
are given as:

the matrix F is diagonal, with entries

F11 =
1

9
cos(hk2) cos(hk3) +

2

9
cos (k3h) +

2

9
cos (k2h) +

4

9
,

F22 =
1

9
cos(hk1) cos(hk3) +

2

9
cos (k3h) +

2

9
cos (k1h) +

4

9
,

F33 =
1

9
cos(hk1) cos(hk2) +

2

9
cos (k2h) +

2

9
cos (k1h) +

4

9
,

the matrix G is complex Hermitian with entries

G =





g11 g12 g13

ḡ12 g22 g23

ḡ13 ḡ23 g33



 ,
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where ḡ denotes the complex conjugate of g and

g11 =
8

3
− 2

3
cos(h(k2 − k3)) −

2

3
cos(hk2) −

2

3
cos(hk3) −

2

3
cos(h(k2 + k3)),

g12 = −2

3
+

1

6
e−ih(k2+k3) − 1

6
e−ih(−k1+k2+k3) − 2

3
e−ih(−k1+k2)+

+
2

3
e−ihk2 +

1

6
e−ih(−k1+k3) − 1

6
e−ihk3 − 1

6
e−ih(−k1+k2−k3)+

+
1

6
e−ih(k2−k3) +

1

6
eih(k1+k3) − 1

6
eihk3 +

2

3
eik1h,

g13 = −2

3
+

1

6
e−ih(k2+k3) − 1

6
e−ih(−k1+k2+k3) +

1

6
e−ih(−k1+k2)−

− 1

6
e−ihk2 − 2

3
e−ih(−k1+k3) +

2

3
e−ihk3 +

1

6
eih(k1+k2)−

− 1

6
eih(k1+k2−k3) +

1

6
eih(k2−k3) − 1

6
eihk2 +

2

3
eik1h,

g22 = −2

3
cos(k1h) +

8

3
− 2

3
cos(h(−k1 + k3)) −

2

3
cos(hk3) −

2

3
cos(h(k1 + k3)),

g23 = −2

3
− 1

3
cos(k1h) +

1

6
e−ih(−k1+k3) +

2

3
e−ihk3 +

1

6
eih(k1+k2)−

− 1

6
eih(k1+k2−k3) − 2

3
eih(k2−k3) +

2

3
eihk2 +

1

6
eih(−k1+k2)−

− 1

6
eih(−k1+k2−k3) +

1

6
e−ih(k1+k3),

g33 = −2

3
cos(h(k1 + k2)) +

8

3
− 2

3
cos(k1h) − 2

3
cos(hk2) −

2

3
cos(h(−k1 + k2)).





CHAPTER 4

Implicit a posteriori error estimates for the Maxwell
equations

An implicit a posteriori error estimation technique is presented and analyzed for
the numerical solution of the time-harmonic Maxwell equations using Nédélec
edge elements. For this purpose we define a weak formulation for the error on
each element and provide an efficient and accurate numerical solution technique
to solve the error equations locally. We investigate the well-posedness of the
error equations and also consider the related eigenvalue problem for cubic ele-
ments. Numerical results for both smooth and non-smooth problems, including
a problem with reentrant corners, show that an accurate prediction is obtained
for the local error, and in particular the error distribution, which provides es-
sential information to control an adaptation process. The error estimation tech-
nique is also compared with existing methods and provides significantly sharper
estimates for a number of reported test cases.

4.1 Introduction

The solution of the Maxwell equations frequently contains structures with lim-
ited regularity, such as singularities near corners and non-convex edges. These
structures can be efficiently captured using hp-adaptive techniques, in which the
mesh is locally refined and coarsened (h-adaptation) or the polynomial order in
individual elements is adjusted (p-adaptation). Examples of hp-adaptive tech-
niques applied to the Maxwell equations can be found in e.g. [28, 38, 83, 84, 85,
110]. The hp-adaptation technique is a promising approach to obtain efficient
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numerical algorithms to solve the Maxwell equations, but requires a reasonably
accurate estimate of the local error in the numerical solution in order to control
the adaptation process. In simple cases one can predict the regions which need
to be adapted, but a more general approach requires the use of a posteriori
error estimates in which the local error is predicted based on the numerical so-
lution. General techniques for a posteriori error estimation are discussed in e.g.
[3, 10, 11, 43, 49, 104], but providing accurate a posteriori error estimates for
the Maxwell equations still poses many problems.

In the a posteriori error analysis of the Maxwell equations one encounters two
basic problems: the bilinear form of the Maxwell equations is in general not
coercive and the analytic solution is not necessarily smooth. Moreover, in real-
life situations computations often have to be done in three-dimensional domains
of complex geometry (e.g. with reentrant corners) and consisting of different
materials (so that the coefficients of the equations are discontinuous). To avoid
these difficulties, several studies [15, 16, 80] only investigate a problem defined
by a coercive bilinear form. Others, e.g. [73], assume some regularity in the
solution of the dual problem.

There are several techniques to obtain a posteriori error bounds for the Maxwell
equations. Explicit methods, see e.g. [15, 73], give an error estimate based on
the available numerical solution and are relatively easy to implement. The error
bounds in explicit methods contain in general unknown coefficients, which also
depend on the wave number in the equations, and frequently result in unsharp
estimates. Another approach is provided by using a hierarchical basis, see e.g.
[3], [12]. This approach has been applied in [16] to the (curl) elliptic Maxwell
equations. The analysis of this method is based on some assumptions, such as
the saturation assumption ([3], Section 5.2) and the replacement of the bilinear
form by an equivalent (localized) bilinear form which ignores coupling terms to
obtain a small linear system for the error equations. The validity and effect of
these assumptions on the accuracy requires, however, careful attention. Implicit
error estimators for the Maxwell equations have been developed in [85], based
on the approach in [36], and successfully applied to an hp adaptive finite ele-
ment algorithm for the Maxwell equations in 3D. Lacking a complete analysis,
the authors applied an equilibration technique to ensure well-posedness which
results in a rather complicated computational procedure.

In this chapter we further investigate the use of implicit error estimators. We
follow an approach originally developed for elliptic partial differential equations,
see e.g. [3], which when properly formulated, is also applicable to obtain local
error estimates for the Maxwell equations. For this purpose, we first define a
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weak formulation for the error in each element, which is solved with a finite
element method. This is the main difference with explicit a posteriori error esti-
mates which only use the data provided by the numerical solution. We consider
the time-harmonic Maxwell equations with perfectly conducting boundaries dis-
cretized with Nédélec edge elements, but many ideas can be applied in a more
general setting. The main benefit of implicit error estimates is that we do not
encounter unknown or very large constants in the a posteriori error estimates.
The success of this approach, however, strongly depends on the definition of
the boundary conditions for the local error equations and the choice of a proper
basis for the numerical solution of the local problems. The latter is achieved by
using higher order face and element bubble functions.

The second topic we address are the theoretical properties of the implicit a pos-
teriori error estimation technique. First, we investigate the well posedness of
the weak formulation for the local error, in particular in relation to the bound-
ary conditions used in the local error equations. Also, the eigenvalue problem
related to the local error equations is investigated in detail. Following the lines
in [3] we introduce an error indicator and point out that this provides a lower
bound for the exact error and an upper bound for our implicit estimate (up to a
constant factor in both cases). These results give the implicit a posteriori error
estimation technique a sound theoretical basis and make it possible to avoid
some of the involved techniques used in [85, 110].

Instead of giving sharp error estimates we check the preciseness of our method
using numerical experiments. We pay special attention to cases where the ana-
lytic solution is non-smooth and also investigate the problem in computational
domains with reentrant corners. Both the local and global error are estimated
in the H(curl) norm and compared with the exact error. We also consider the
error distribution, since this is essential information to decide in which areas the
mesh has to be adapted. Despite of the expected difficulties we obtain rather
precise estimates in each case.

The outline of Chapter 4 is as follows. In Section 4.2 we start with the math-
ematical formulation and define the finite element discretization. The implicit
error estimation technique is formulated and analyzed in Section 4.3. Next, we
discuss lower and upper bounds on the error indicator in Section 4.4. The im-
plicit a posteriori error estimation technique is tested numerically on a number
of problems of increasing difficulty in Section 4.5. Finally, Section 4.6 contains
conclusions and suggestions for future work.

In this chapter we frequently use notations and techniques discussed in the
monograph [73]. For a short, self-contained introduction to finite element meth-
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ods for the Maxwell equations we refer to [37].

4.2 Mathematical formalization

Consider the time harmonic Maxwell equations for the electric field E : Ω → R3

with perfectly conducting boundary conditions, which are defined as

curl curl E − k2E = J in Ω,

E × ν = 0 on ∂Ω,
(4.1)

where Ω ⊂ R3 is a Lipschitz domain with outward normal vector ν and J ∈
[L2(Ω)]3 a given source term which is related to the wave number k. Here k = ω

c
with the frequency ω and the speed of light c. Here E × ν is defined in a trace
sense [24], [73] discussed later.

In the subsequent derivations we will need the following spaces and operators.
The Hilbert space corresponding to the Maxwell equation is

H(curl,Ω) = {u ∈ [L2(Ω)]3 : curl u ∈ [L2(Ω)]3},

equipped with the curl norm

‖u‖curl,Ω = (‖u‖2
[L2(Ω)]3 + ‖curl u‖2

[L2(Ω)]3)
1/2. (4.2)

The differential operators div and curl are understood in a distributional sense.
While analyzing (4.1) a subspace of H(curl,Ω) is commonly used, namely

H0(curl,Ω) = {u ∈ H(curl,Ω) : ν × u|∂Ω = 0}.

The above definition of H0(curl,Ω) makes only sense if u|∂Ω is well defined and
a duality between this trace and the outward normal can be defined. To be
more precise we first define for a smooth function v ∈ C∞(Ω) the operators γτ

and πτ with
γτv = ν × v|∂Ω and πτv = (ν × v|∂Ω) × ν. (4.3)

One can prove that γτ can be extended to a continuous operator mapping
H(curl,Ω) into [H−1/2(∂Ω)]3. The trace operator πτ can also be extended
to H(curl,Ω), however, a natural norm on the range is more involved. For the
details we refer to [73], or for a more extensive analysis to [25]. The above
definitions and notations will also be used for a subdomain K ⊂ Ω.

The scalar product in [L2(Ω)]3 and [L2(K)]3 are denoted with (·, ·) and (·, ·)K ,
respectively. Similarly, (·, ·)∂Ω and (·, ·)∂K denote the duality pairing between
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the two types of traces on ∂Ω and ∂K, respectively.

We also recall an appropriate Green’s formula: for any u,v ∈ H(curl,Ω) we
have the identity

(curl u,v) − (u, curl v) = (γτu, πτv)∂Ω, ∀ u,v ∈ H(curl,Ω), (4.4)

and a corresponding formula holds on K.

Turning to the variational formulation of (4.1) we introduce the bilinear form

B : H(curl,Ω) × H(curl,Ω) → R

with
B(u,v) = (curl u, curl v) − k2(u,v).

and BK will denote the corresponding bilinear form on H(curl,K)×H(curl,K).

Using the above notations the weak formulation of the problem (4.1) is to find
E ∈ H0(curl,Ω) such that

(curl E, curl v) − k2(E,v) = (J ,v) ∀ v ∈ H0(curl,Ω). (4.5)

4.2.1 Finite elements in H(curl): Edge elements

For the numerical solution of (4.5) we use the H(curl) conforming edge finite
element method initiated by Nédélec [76].

The finite element (K̂, P̂ , Â) [22] is defined on the unit cube K̂ and an isopara-
metric mapping ([22], Section 4.7) DK : K̂ → K is used to define it on a
hexahedron K. In general, DK could be nonlinear but we restrict the analysis
to affine maps.

In the numerical experiments we use the lowest order elements

P̂ = {u = [u1, u2, u3]
t : u1 ∈ Q0,1,1;u2 ∈ Q1,0,1;u3 ∈ Q1,1,0}, (4.6)

with Qk,l,m the vector space of k, l and m order polynomials with respect to
their first, second and third variables, respectively.

It is well known that the covariant transformation preserves line integrals un-
der a change of coordinates [73, 90], so that the basis functions for a given
hexahedron K can be defined as

wj,K(x, y, z) =
(
(dD−1

K )T W 0
j

)
◦ D−1

K (x, y, z), (4.7)
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where dDK is the Jacobian of the transformation DK , and {W 0
j}12

j=1 is a basis
in 4.6.

Using the transformation in (4.7) one easily computes the curl of the basis func-
tions (see [73], (3.76) and the corresponding statements: Lemma 3.57, Corollary
3.58). A similar transformation for divergence conforming finite elements ([73],
(3.77)) is well known and called the Piola transformation ([72], p. 112).

Next, we introduce a hexahedral tessellation Th of Ω. The space Wh of Nédélec’s
edge elements is then defined by

Wh = {uh ∈ H(curl,Ω) : uh|K ∈ span(wj,K), ∀K ∈ Th},

where span(wj,K) denotes the linear hull of w1,K , w2,K , . . . , w12,K and with this
the discretized version of (4.5) reads:

Find Eh ∈ Wh, such that for all W ∈ Wh the following relation is satisfied:

(curl Eh, curl W ) − k2(Eh,W ) = (J ,W ). (4.8)

4.3 Implicit error estimation

Providing reliable explicit bounds for the computational error in case of the
Maxwell equations is still an unsolved problem due to many difficulties as men-
tioned in the introduction. The idea of implicit a posteriori error estimation
can help to overcome these problems. In this procedure we are not interested in
explicit error bounds (depending the data from some existing numerical approx-
imation), we rather formulate a local problem for the error using the available
information. This local problem has to be equipped with some meaningful
boundary condition and we have to ensure that it is well posed.

4.3.1 Formulation of the local problem

Assume that Eh is a computed numerical solution. Our aim is to estimate the
computational error eh = (E − Eh)|K on a subdomain K consisting of a set
of elements K ∈ Th, with Th being the finite element tessellation. For this we
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state a variational problem for eh on the subdomain K as follows:

BK(eh,v) = (curl eh, curl v)K − k2(eh,v)K

= (curl (E − Eh), curl v)K − k2(E − Eh,v)K

= (curl E, curl v)K − k2(E,v)K − ((curl Eh, curl v)K − k2(Eh,v)K)
(4.9)

= (curl curl E,v)K − (γτcurl E, πτv)∂K − k2(E,v)K − BK(Eh,v)K

= (J ,v)K − (γτcurl E, πτv)∂K − BK(Eh,v), ∀v ∈ H(curl,K).

In order to get a well defined right hand side we should use an approximation

γτcurl E ≈ ̂γτcurl E (4.10)

on the interelement faces. The quantity γτcurl E will be called the natural
boundary data from now on. In the literature, the homogeneous natural bound-
ary condition is called the magnetic symmetry wall condition [37]. Introducing
this approximation into (4.9) we arrive at the variational problem for the im-
plicit error estimate: Find êh ∈ H(curl,K) such that

BK(êh,v) = (J ,v)K − ( ̂γτcurl E, πτv)∂K − BK(Eh,v), ∀v ∈ H(curl,K).
(4.11)

4.3.2 Numerical solution of the local problem

We will now give a discretized form of the local problem (4.11) which requires a
concrete choice for the approximation (4.10) of the natural boundary condition
and a finite element basis on the subdomain K.

Approximation of the natural boundary condition

We first specify the approximation in (4.10). For the definition of the boundary
condition for the local error equation (4.10) we introduce lj the common face of
the two neighboring elements K and Kj and νj the outward normal on lj with
respect to K. We approximate γτcurlE on lj with the average of the tangential
traces of the numerical approximation Eh on its two sides K and Kj . That is
we shall use the approximation

γτcurl E|lj = νj × curl E|lj ≈ 1

2
(νj ×

[
curl Eh|K + curl Eh|Kj

]
) (4.12)

which can be straightforwardly implemented.
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Choice of the local basis

The local error equation (cf. (4.11)) is solved numerically in a finite-dimensional
space which we denote with Vh. As discussed in [3] (see Section 3.4.2 in [3] for
several examples), the space Vh has to be selected carefully.

It is known that the finite element solution Eh is a quasioptimal approximation
of E within the finite element space Wh. Therefore, it does not make sense to
use this space to solve the error equation, we should rather estimate the com-
ponents of êh which are not present in Wh.

On the other hand, Nédélec type edge elements are related to the electric field
strength along the edges. Therefore, to enhance the approximation of the error
we should use elements in the local problems which are zero on all edges since
the error is mainly non-zero away from the edges. This corresponds to the tech-
nique in [23], Section 2.2 for elliptic problems and helps to localize the error
equation.

Based on these requirements we use a finite dimensional space which is zero on all
edges and for all faces we associate a basis function which is nonzero only on that
face. In concrete terms, the finite element space Vh = span(φj), j = 1, . . . , 9 on
each element K is given by

φj(x, y, z) = φ0
j (ξ, η, ζ) ◦ D−1

K (x, y, z), (4.13)

and V̂ = span (φ0
j ), j = 1, 2, . . . , 9, where the face and the element bubble

functions on the reference element K̂ are

φ0
1 = ((1 − ξ)(1 − η)η(1 − ζ)ζ, 0, 0)

T
, φ0

6 = (0, 0, (1 − ξ)ξ(1 − η)ηζ)
T

,

φ0
2 = (ξ(1 − η)η(1 − ζ)ζ, 0, 0)

T
, φ0

7 = ((1 − ξ)ξ(1 − η)η(1 − ζ)ζ, 0, 0)
T

,

φ0
3 = (0, (1 − ξ)ξ(1 − η)(1 − ζ)ζ, 0)

T
, φ0

8 = (0, (1 − ξ)ξ(1 − η)η(1 − ζ)ζ, 0)
T

,

φ0
4 = (0, (1 − ξ)ξη(1 − ζ)ζ, 0)

T
, φ0

9 = (0, 0, (1 − ξ)ξ(1 − η)η(1 − ζ)ζ)
T

φ0
5 = (0, 0, (1 − ξ)ξ(1 − η)η(1 − ζ))

T
.

Compared to (4.7) the transformation in (4.13) is a minor simplification which
results in the same finite element space as the one in (4.7) but makes the com-
putations slightly easier.

The analysis of the local problem given in Appendix 4.7 confirms that this basis
results in a well posed problem for the discrete form of the error equation (4.11).
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Weak form of the local problem

Using the approximation (4.12) and the local basis Vh we obtain the discrete
form of (4.11):

Find êh ∈ Vh such that ∀ w ∈ Vh

(curl êh, curl w)K − k2(êh,w)K = (J ,w)K − (curl Eh, curl w)K

+k2(Eh,w)K − 1

2
(νj ×

(
curl Eh|K + curl Eh|Kj

)
,w)∂K .

(4.14)

4.3.3 Analysis of implicit error estimation

Our objective is to solve the local problems arising in (4.14) for the unknown
error term êh. In this section, we establish that any reasonable approximation
in (4.10) results in a well posed problem in (4.11). Observe that this equation is
the variational form of the Maxwell equations equipped with natural boundary
data. Note that a similar procedure for elliptic problems results in ill-posed
local problems which require some postprocessing to be solvable [3].

Lifting of the local problem

The well-posedness of (4.11) will be investigated for the case of homogeneous
natural boundary conditions. To do this we apply the trace lifting l : Ran(γτ ◦
curl|∂K) → H(curl,K) (or equivalently, take an inverse of the tangential trace
of the curl operator on H(curl,K)) such that

γτ (curl lu) = u, ∀u ∈ Ran(γτ ◦ curl|∂K).

Defining now ēh = êh − l(νi × curl êh|∂K) we can rewrite (4.11) as follows:

BK(ēh,v) = BK(êh,v) − BK(l(νi × curl êh|∂K),v)

= (J ,v)K − ( ̂γτcurl E, πτv)∂K − BK(Eh,v)

− (curl curl l( ̂γτcurl E),v)K

+ ( ̂γτcurl E, πτv)∂K + k2(l( ̂γτcurl E),v) (4.15)

= (J − curl curl l( ̂γτcurl E) + k2l( ̂γτcurl E),v)K − BK(Eh,v),

∀ v ∈ H(curl,K).

Observe that on the right hand side we obtained a bounded linear functional
of v such that using the Riesz representation theorem we will denote it with
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(J̃ ,v)K . This approach is only necessary for our analysis, we do not need to
compute the lifting operator explicitly, since in the finite element procedure the
inhomogeneous natural boundary condition can be included in the variational
form.

Preliminaries to the well posedness result

In the following two subsections we prove some well posedness results which are
formulated in an arbitrary simply connected domain with a Lipschitz boundary.
In this way, all of the results can be applied also in the case when local problems
will be investigated in the subdomains of the original domain Ω. Before proving
the well posedness of the variational problem we state a lemma which will be
the cornerstone of our compactness arguments.

Lemma 4.1. The Hilbert space H(curl,Ω) can be decomposed as the direct sum
of orthogonal subspaces:

H(curl,Ω) = ker curl ⊕ (ker curl)⊥, (4.16)

and the imbedding of the second component into [L2(Ω)]3 is compact.

Proof Using the decomposition theorem in [34], p. 216, and the imbedding in
Theorem 2.8 in [5] a standard argument gives the statement of the lemma. For
a complete proof we refer to [65]. ¥

Well posedness of the local problem

We can state now the well-posedness of (4.15) and prove the following:

Lemma 4.2. Assume that k is not a Maxwell eigenvalue in the sense that the
problem: Find u ∈ H(curl,Ω) such that

B(u,v) = 0, ∀ v ∈ H(curl,Ω)

has only the trivial (u = 0) solution. Then the variational problem: Find
u ∈ H(curl,Ω) such that

B(u,v) = (J̃ ,v), ∀ v ∈ H(curl,Ω) (4.17)

has a unique solution for all J̃ ∈ [L2(Ω)]3.

Proof The proof can be carried out using Lemma 4.1 and the technique in [73].
For a complete proof, we refer to [65]. ¥
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Lemma 4.3. Assume that for the solution u of (4.17) curl curl u ∈ [L2(Ω)]3

holds. Then u solves the Maxwell equation equipped with the natural boundary
condition:

curl curl u − k2u = J̃ in Ω,

ν × curl u = 0 on ∂Ω.
(4.18)

Proof Using the assumption in this lemma and the Green theorem (4.4) for the
curl operator we obtain that

0 = (curl u, curl v) − k2(u,v) − (J̃ ,v) = (curl curl u,v) − k2(u,v) − (J̃ ,v).

holds for every v ∈ D(Ω) with D(Ω) = {v ∈ C∞(Ω) : v has compact support}.
Since the embedding D(Ω) ⊂ H(curl,Ω) is dense, (curl curl u− k2u− J̃ ,v) = 0
for all v ∈ H(curl,Ω) curl curl u − k2u = J̃ holds in [L2(Ω)]3.

Using the Green theorem again we obtain that for all v ∈ H(curl,Ω)

0 = (curl curl u − k2u − J̃ ,v)

= (curl u, curl v) + (γτcurl u, πτv)∂Ω − k2(u,v) − (J̃ ,v)

= (γτcurl u, πτv)∂Ω.

(4.19)

In this way, it also holds for any v ∈ [H1(Ω)]3, therefore, by the surjectivity
of the trace mapping H1(Ω) → H1/2(∂Ω) we obtain that γτcurl u = 0 in the
[H−1/2(∂Ω)]3 sense. ¥

Remarks:
1. Indeed, the dual space of the πτ map of H(curl,Ω) is the kernel space of the
natural boundary trace γτ ◦ curl. For the details, see [25].
2. As far as we consider a finite element scheme with piecewise polynomial basis
functions, the eigenvalue problem in the weak sense (discussed in Lemma 4.3)
is also equivalent with the eigenvalue problem for the original equation (4.1).

4.3.4 The eigenvalue problem for the time-harmonic Maxwell

equations with natural boundary conditions

The well posedness of the local problems for the error can be guaranteed if we
ensure that k is not a Maxwell eigenvalue of these problems.

More specifically, recall that in Section 2, the weak form (4.9) for the local error
equation equipped with the natural boundary condition (4.12) results in the
variational problem (4.15) which is well posed by Lemma 4.2 if and only if k
is not an eigenvalue of the appropriate boundary value problem (4.18). In this
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section, we determine the eigenvalues belonging to cubic subdomains. In this
way, for any k (given in the original problem (4.1)) we will be able to choose the
subdomain K in the tessellation such that the boundary value problem (4.9)
(or even (4.11)) on K will be well posed.

First, we reduce the eigenvalue problem such that we can apply some techniques
and results which are available for the Laplacian operator.

Lemma 4.4. If k 6= 0 is a Maxwell eigenvalue of the differential operator on
the left hand side of (4.18), then its eigenfunction u is in the subspace u ∈
(ker curl)⊥ and solves the following Helmholtz equation:

∆u − k2u = 0 in Ω,

ν × curl u = 0 on ∂Ω,
(4.20)

where the operator ∆ is defined componentwise: for v : Ω → R3 with v =
(v1, v2, v3), ∆v := (∆v1,∆v2,∆v3).

Proof Assume that u = u1 + u2 (according to the decomposition (4.16)) is an
eigenfunction of (4.18). Then

curl curl(u1 + u2) − k2(u1 + u2) = curl curl u2 − k2(u1 + u2) = 0. (4.21)

Note that the boundary condition ν×curlu = 0 implies that ν×curlu2 = 0 and
therefore, taking the [L2(Ω)]3 scalar product of both sides with u1 and using
the orthogonality in (4.16) we obtain

0 = (curl curl u2 − k2(u1 + u2),u1)

= (curl u2, curl u1) + (γτcurl u2, πτu1)∂Ω − k2(u1,u1) = −k2‖u1‖2.

This means that u1 = 0 and using the relation curlcurlu2 = −∆u2+graddivu2 =
−∆u2 in (4.21) we obtain the statement in the lemma. ¥

In the following we use the conditions arising from the fact that u ∈ (ker curl)⊥ ⊂
H0(div 0,Ω) (see proof of Lemma 1) and the boundary condition in (4.20):

div u = 0 in Ω, (4.22)

u · ν = 0 on ∂Ω, (4.23)

ν × curl u = 0 on ∂Ω. (4.24)

Accordingly, our objective is to find the eigenvalues and eigenfunctions of the
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following operator L:

L : [L2(Ω)]3 → [L2(Ω)]3,

Dom L = {u ∈ H0(div 0,Ω) : ∆u ∈ [L2(Ω)]3 and ν × curl u = 0 on ∂Ω},
Lu = ∆u.

(4.25)

4.3.5 Eigenvalues in a rectangular domain

In this subsection, we investigate the eigenvalue problem on the cube Ω =
(0, π) × (0, π) × (0, π). Applying a linear transformation for the eigenfunctions
on Ω allows us to solve the eigenvalue problem on rectangular domains.

This result makes it possible to choose the subdomains in the finite element
tessellation in such a way that the local problem for the error is well posed on
each subdomain.

We present only the results in this section, the proofs are provided in [65].

Theorem 4.5. The eigenfunctions of L defined in (4.25) are given by:

u(x1, x2, x3) =





C1 sin k1x1 cos k2x2 cos k3x3

C2 cos k1x1 sin k2x2 cos k3x3

C3 cos k1x1 cos k2x2 sin k3x3



 , (4.26)

for any k1, k2, k3 ∈ N with

k1C1 + k2C2 + k3C3 = 0 and C1, C2, C3 ∈ R. (4.27)

Based on Theorem 4.5 we can give the eigenfunctions and eigenvalues of the
Maxwell eigenvalue problem with homogeneous natural boundary conditions

curl curl v = k2v in Ba,b,c,

ν × curl v = 0 on ∂Ba,b,c,
(4.28)

where Ba,b,c is a rectangular domain with edge lengths a, b and c, respectively.

Theorem 4.6. The eigenfunctions of the Maxwell equation (4.28) are

v(x, y, z) =





C1 sin k1π
a x cos k2π

b y cos k3π
c z

C2 cos k1π
a x sin k2π

b y cos k3π
c z

C3 cos k1π
a x cos k2π

b y sin k3π
c z



 ,
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for any k1, k2, k3 ∈ N with

k1π

a
C1 +

k2π

b
C2 +

k3π

c
C3 = 0 and C1, C2, C3 ∈ R

and the appropriate eigenvalues are k2 =
(

k1π
a

)2
+

(
k2π

b

)2
+

(
k3π

c

)2
with k1, k2, k3 ∈

N arbitrary.

4.4 Implicit error estimate as a lower bound of

the error

If the a posteriori error estimates have to be used in an adaptation procedure
we also have to investigate a lower bound for the exact error. This will ensure
that we do not get a pessimistic overestimate of the actual error when the mesh
size is reduced. For the estimates in this section we will define an error indi-
cator ηK on K. Our analysis consists of two steps: first, we point out that
the implicit a posteriori error estimate êh discussed in this chapter provides a
lower bound estimate of ηK (up to a certain factor). Second, we verify that the
error indicator can also be used as a lower bound (up to a certain factor and
some computable remainders) of the exact error on a patch of the subdomain
K. The proof is based on the approach in [3]. While the second step is a rather
straightforward modification of the original proof for elliptic problems, the first
one needs a more careful analysis since the bilinear form B in the variational
problem is not coercive.

Since the mappings DK are affine, the subdomains in the tesselation Th consist
of parallelepipeds. Moreover, we assume that the mesh is non-degenerated, i.e.
the ratio of the diameter of elements and their minimal edge length diam K

min |eK |
is bounded. An important consequence of this assumption is that there are
constants K1,K2 ∈ R+ such that for any K with max |ek| < h we have

K1h ≤ min |eig dDK | ≤ max |eig dDK | ≤ K2h, (4.29)

where eig denotes the spectrum. Since the mapping DK is affine, dDK is the
linear part of DK .

For solving the local problem for the error we use the finite dimensional space
Vh on K. This choice should lead to a well posed local problem. A necessary
condition for this is given in Lemma 4.12.

In the finite element discretization we use the notation ν × · instead of γτ ,
and similarly, for functions v ∈ [H1(K)]3 we may omit the operator πτ on the
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boundary making a closer link to the numerical procedure. For the consec-
utive computations we also recall a Green’s formula according to (4.4) which
states that for all u ∈ H(curl,Ω) and v ∈ [H1(Ω)]3 the following identity holds
(Theorem 3.29 in [73]):

(curl u,v) − (u, curl v) = (ν × u,v)∂Ω. (4.30)

Using (4.9) and the approximation (4.12) we obtain the weak form for the error
estimate êh on the bubble function space Vh (introduced in Section 4.3.2) as
follows: Find an êh ∈ Vh, such that ∀v ∈ Vh the following relation is satisfied:

BK(êh,v) = (J ,v)K − BK(Eh,v) − 1

2

∑

j

(νj ×
[
curl Eh|K + curl Eh|Kj

]
,v)lj

= (J ,v)K − (curl curl Eh,v)K + k2(Eh,v)K + (ν × curl Eh,v)∂K

− 1

2

∑

j

(νj ×
[
curl Eh|K + curl Eh|Kj

]
,v)lj (4.31)

= (J ,v)K − (curl curl Eh,v)K + k2(Eh,v)K

+
1

2

∑

j

(νj ×
[
curl Eh|K − curl Eh|Kj

]
,v)lj

= (rK ,v)K +
∑

j

(Rlj ,v)lj ,

where we have used the notations

rK = J − curl curl Eh + k2Eh in K

for the residual within the subdomain K and

Rlj =
1

2
(νj ×

[
curl Eh|K − curl Eh|Kj

]
)

for the tangential jump of the curl at lj within the subdomain K and êh denotes
the desired implicit error estimate. Note that (4.31) gives a variational form for
êh which includes the approximation in (4.12). In the following we drop the
subscript for the residual and the tangential jump, respectively, the localization
will be shown when taking the norm (or some bilinear map) of these quantities.

Using the above quantities r and R we define ηK as error indicator as follows:

ηK = (h2‖r‖2
[L2(K)]3 + h‖R‖2

[L2(∂K)]3)
1
2 .
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4.4.1 Bubble functions

For the analysis we use the bubble function technique outlined in [3] and recall
some basic definitions:

Definition 4.7. Let Ψ̂ : K̂ → R be given by

Ψ̂(ξ, η, ζ) = ξ(1 − ξ)η(1 − η)ζ(1 − ζ)

and Ψ : K → R defined using the isoparametric mapping DK . Similarly, for
a given p̂ ∈ P̂ where P̂ ⊂ [P1(K̂)]3, with P1(K̂) a finite dimensional space
of polynomials, an appropriate p ∈ P ⊂ [P1(K)]3 can be defined by p(x) =
p̂(D−1

K (x)).

In the error estimation process we substitute v ∈ P with Ψv on K, where Ψv

can be extended by continuity to ∂K. The following lemmas ensure that the
multiplication with Ψ does not influence the magnitude of the L2 or the curl
norm compared to that of v. The proofs are based on scaling arguments.

Lemma 4.8. Consider a non-degenerate family Th of parallelepiped meshes on
Ω. Then there exists a positive constant C such that for all subdomains K ⊂ Th

and p ∈ P
C−1‖p‖2

[L2(K)]3 ≤ (Ψp,p)K ≤ C‖p‖2
[L2(K)]3 (4.32)

and

C−1‖p‖2
[L2(K)]3 ≤ ‖Ψp‖2

[L2(K)]3 + h2‖curl Ψp‖2
[L2(K)]3 ≤ C‖p‖2

[L2(K)]3 , (4.33)

with h the diameter of K.

Definition 4.9. According to [3] p. 24 we define the face bubble functions Φ̂j :

K̂ → R, j = 1, . . . , 6, which vanish on all edges of K̂ and all faces l̂m, m =
1, . . . , 6, m 6= j.
Using the mapping DK : K̂ → K we define Φj , j = 1, . . . , 6, the bubble functions
associated with the faces lj of K ∈ Th.

We localize a face bubble function Φi, associated to the face li, by restricting it
to the subdomain K̃i = K ∪ li ∪ Ki, where li is the common face of K and Ki.
For the consecutive estimates we again provide some inequalities:

Lemma 4.10. Let us consider a non-degenerate family Th of parallepiped el-
ements on Ω. Then there exists a positive constant C such that for all subdo-
mains K ⊂ Th, functions p ∈ P (where P is a fixed finite dimensional subspace
of [L2(K)]3) and faces li, i = 1, . . . , 6 the following inequalities hold:

C−1‖p‖2
[L2(li)]3

≤
∫

li

Φip · p ≤ C‖p‖2
[L2(li)]3

, (4.34)
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‖Φip‖2
[L2(K̃i)]3

≤ Ch‖p‖2
[L2(li)]3

(4.35)

‖Φip‖2
[L2(li)]3

≤ C‖p‖2
[L2(li)]3

(4.36)

‖Φip‖2
curl,K̃i

≤ Ch−1‖p‖2
[L2(li)]3

. (4.37)

Proof The proof can be carried out again using scaling arguments similarly to
Theorem 2.4 in [3] using that the mesh is non-degenerate. ¥

We also state a lemma on the comparison of the different norms in the finite
element spaces when they are given on a scale of cubes.

Lemma 4.11. For all subdomains K ⊂ Th (with the faces li, i = 1, . . . , 6) and
for all v ∈ Vh we have the estimates

‖vk‖[L2(K)]3 ≤ Ch‖curl vk‖[L2(K)]3 (4.38)

and
‖vk‖[L2(li)]3 ≤ Ch

1
2 ‖curl vk‖[L2(K)]3 (4.39)

with a constant C which does not depend on h.

Proof The proof can be carried out with a change of variables according to DK .
¥

4.4.2 Lower bound for the computational error in terms

of the residuals

When the bilinear form B is restricted to V̂ × V̂ we may identify it with the
stiffness matrix B1, which is given as B1 = B1,curl−k2B1,0 such that the (i, j)th
entries i, j = 1, 2, . . . , n are as follows:

B1,curl[i][j] = (curl Φ̂∗
i , curl Φ̂∗

j )K̂ , B1,0[i][j] = (Φ̂∗
i , Φ̂

∗
j )K̂

with a basis {Φ̂∗
i }n

i=1 of V̂ . B1,K denotes the appropriate mass matrix on K
which can be again decomposed as

B1,K = B1,curl,K − k2B1,0,K ,

where the components are defined as

B1,curl,K(Φ∗
i ,Φ

∗
j ) = (curl Φ∗

i , curl Φ∗
j )K , and B1,0,K(Φ∗

i ,Φ
∗
j ) = (Φ∗

i ,Φ
∗
j )K

with an appropriate basis {Φ∗
i }n

i=1 of Vh.

We can state now the following lemma, which is central in our analysis.
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Lemma 4.12. Assume that Th is a cubic mesh, then for a sufficiently fine
mesh the bilinear form BK satisfies the discrete inf-sup condition uniformly on
Vh × Vh, namely there is positive h0 and a constant C0 > 0 such that for any
0 < h < h0

C0 sup
v∈Vh

BK(u,v)

‖v‖curl,K
≥ ‖u‖curl,K , ∀ u ∈ Vh, (4.40)

where K is the cube with edge length h and C0 does not depend on h.

The proof of Lemma 4.12 is given in Appendix 4.7.

Lemma 4.13. If we choose the bubble function space Vh and consider a cubic
tesselation then the bilinear form for the error on K = (0, h)3 reads as B1,K =
1
hB1,curl − k2hB1,0 and the mesh size h0 can be taken as

h0 =
20(16 −

√
246)√

2k2 + 1(16 +
√

246)

in Lemma 4.12.

It is easy to see that BK is continuous on the whole of H(curl,K)×H(curl,K)
as stated in the following lemma.

Lemma 4.14. For the bilinear form BK we have the continuity estimate:

|BK(u,v)| ≤
√

2(1 + k2)‖u‖curl,K‖v‖curl,K ∀ u,v ∈ H(curl,K). (4.41)

Proof We prove the lemma with a straightforward computation as follows:

|BK(u,v)|2 = |(curl u, curl v)K − k2(u,v)K |2

≤ 2(curl u, curl v)2K + 2k4(u,v)2K

≤ 2‖curl u‖2
[L2(K)]3‖curl v‖2

[L2(K)]3 + 2k4‖u‖2
[L2(K)]3‖v‖2

[L2(K)]3

≤ 2(1 + k4)‖u‖2
curl,K‖v‖2

curl,K .

Taking the square roots on both sides we obtain the estimate in the lemma. ¥

We now compare the error indicator ηK with the implicit error estimate êh

obtained from the weak form (4.31) and state the following lemma.

Lemma 4.15. There is a constant C1 independently from the mesh parameter
h such that

‖êh‖curl,K ≤ C1ηK , (4.42)

where êh is the implicit error estimate on the subdomain K.
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Proof Using the weak form (4.31) we obtain

‖êh‖curl,K ≤ C0 sup
v∈Vh

BK(êh,v)

‖v‖curl,K
= C0 sup

v∈Vh

(r,v)K + (R,v)∂K

‖v‖curl,K

≤ C0 sup
v∈Vh

1

‖v‖curl,K

(
‖r‖[L2(K)]3‖v‖[L2(K)]3+

‖R‖[L2(∂K)]3‖v‖[L2(∂K)]3
)

≤ C · C0h‖r‖[L2(K)]3 + h
1
2 ‖R‖[L2(∂K)]3 ≤ C · C0

√
2ηK

(4.43)

In the first inequality we used (4.40), then the weak formulation (4.31) followed
by the Cauchy-Schwarz inequality. Finally, we applied the estimates (4.38) and
(4.39) and a basic inequality. ¥

Note that the error estimate êh in Lemma 4.15 gives the exact error (according
to the weak form (4.31)) assuming that the boundary condition (4.12) is exact.
In the following we will compute an approximation of êh in the finite element
space Vh.

The upper estimate of the error indicator ηK will be obtained using the bubble
function technique [3]. We first provide a variational form for the exact error eh

based on the third line of (4.9) and using the notations of the previous sections.

B(eh,v) = (J ,v) − ((curl Eh, curl v) − k2(Eh,v))

=
∑

K∈Th

{(J ,v)K − (curl curl Eh − k2Eh,v)K

+
∑

j

(νj × curl Eh, πτv)lj}

=
∑

K∈Th

(r,v)K +
∑

γ

(R,v)γ ∀ v ∈ H(curl,Ω),

(4.44)

where the last sum is taken over all of the interelement faces γ inside of Ω.
To obtain the second line in (4.44) we used the perfect conducting boundary
condition on ∂Ω, while the final expression was obtained by summation of the
components of a given face from the both sides. This expression can also be
related with (4.31); on the whole domain Ω, the variational form for the exact
and the estimated error coincide since the boundary conditions are given.

We will choose v in (4.44) using the bubble function technique such that the
boundary integral vanishes, which will result in a lower bound for the error on
each subdomain depending only on the element residual r in the subdomain K.
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It is also important that the choice for v is suitable for the estimates (4.32)-
(4.33), which only apply in a finite dimensional space. In light of this, we denote
with r̄ the elementwise interpolation of the residual r using the function space
Vh and choose v = ΨK r̄ on each subdomain K and zero elsewhere. Inserting
this choice for v into (4.44) gives that

B(eh,ΨK r̄) = (r,ΨK r̄)K . (4.45)

In the following estimates we use C for a generic constant independent of the
mesh size h and frequency k, which can be different in each formula. Using
(4.45), and inequalities (4.32), (4.33) for h ≤ 1 we obtain the following estimate:

‖r̄‖2
[L2(K)]3 ≤ C(ΨK r̄, r̄)K = C ((ΨK r̄, r̄ − r)K + B(eh,ΨK r̄))

≤ C(‖ΨK r̄‖[L2(K)]3‖r̄ − r‖[L2(K)]3

+ (1 + k2)‖eh‖curl,K‖ΨK r̄‖curl,K)

≤ C(‖r̄‖[L2(K)]3‖r̄ − r‖[L2(K)]3

+ (1 + k2)h−1‖eh‖curl,K)‖r̄‖[L2(K)]3 .

(4.46)

Dividing by ‖r̄‖[L2(Ki)]3 and using the triangle inequality we finally obtain that

‖r‖[L2(K)]3 ≤ ‖r̄‖[L2(K)]3 + ‖r − r̄‖[L2(K)]3

≤ C(‖r̄ − r‖[L2(K)]3 + (1 + k2)h−1‖eh‖curl,K).
(4.47)

We proceed similarly for the boundary jumps and denote with R̄ the approxi-
mation of the boundary jump using the trace of Vh on the element boundaries,
which is then defined on the interelement faces li. The error arising from these
terms can be localized on K̃ by the choice:

v = ΦlR̄,

associated to the face l as in Lemma 4.10 which is again extended (preserving
the continuity) to be zero outside of K̃. This leads us to the identity

(ΦlR̄,R)l = BK̃(eh,ΦlR̄) − (ΦlR̄, r)K̃ . (4.48)

Using then (4.48), the Cauchy–Schwarz inequality and inequalities (4.34), (4.35),
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(4.36), and (4.37) we obtain the following estimate

‖R̄‖2
[L2(l)]3

≤ C(ΦlR̄, R̄)l = C(ΦlR̄, R̄ − R)l + C(ΦlR̄,R)l

= C((ΦlR̄, R̄ − R)l + BK̃(eh,ΦlR̄) − (ΦlR̄, r)K̃)

≤ C(‖ΦlR̄‖[L2(l)]3‖R̄ − R‖[L2(l)]3

+
√

2(1 + k2)‖eh‖curl,K̃‖ΦlR̄‖curl,K̃ + ‖ΦlR̄‖[L2(K̃)]3‖r‖[L2(K̃)]3)

≤ C(‖R̄‖[L2(l)]3‖R̄ − R‖[L2(l)]3

+ h− 1
2 (1 + k2)‖eh‖curl,K̃‖R̄‖[L2(l)]3 + h

1
2 ‖R̄‖[L2(l)]3‖r‖[L2(K̃)]3),

(4.49)
which after division by ‖R̄‖[L2(l)]3 , yields

‖R̄‖[L2(l)]3 ≤ C(‖R̄−R‖[L2(l)]3+h− 1
2 (1+k2)‖eh‖curl,K̃+h

1
2 ‖r‖[L2(K̃)]3). (4.50)

Finally, adding ‖R̄ − R‖[L2(l)]3 to both sides results in the estimate

‖R‖[L2(l)]3 ≤ ‖R̄‖[L2(l)]3 + ‖R − R̄‖[L2(l)]3

≤ C(‖R̄ − R‖[L2(l)]3 + h− 1
2 (1 + k2)‖eh‖curl,K̃ + h

1
2 ‖r‖[L2(K̃)]3).

(4.51)
Using (4.47) we obtain that

‖R‖[L2(l)]3 ≤ C(h− 1
2 (1 + k2)‖eh‖curl,K̃

+ h
1
2 ‖r̄ − r‖[L2(K̃)]3 + ‖R̄ − R‖[L2(l)]3).

(4.52)

Taking the square of (4.52) and (4.47) respectively, we obtain:

‖R‖2
[L2(l)]3

≤ C(h−1(1 + k2)2‖eh‖2
curl,K̃

+ h‖r̄ − r‖2
[L2(K̃)]3

+ ‖R̄ − R‖2
[L2(l)]3

).
(4.53)

and

‖r‖2
[L2(K)]3 ≤ C(‖r̄ − r‖2

[L2(K)]3 + (1 + k2)2h−2‖eh‖2
curl,K). (4.54)

Using the obvious equality

‖R‖2
[L2(∂K)]3 =

6∑

j=1

‖R‖2
[L2(lj)]3

we sum up (4.53) for all faces lj of K and multiplying ‖r‖2
[L2(K)]3 with h2 and

‖R‖2
[L2(∂K)]3 with h, respectively. Using the definition of ηK we finally get the
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estimate:
1

C
η2

K ≤ h2‖r̄ − r‖2
[L2(K̃)]3

+ h
∑

l⊂∂K

‖R̄ − R‖2
[L2(l)]3

+ (1 + k2)2‖eh‖2
curl,K̃

.

(4.55)

Summarizing, we obtained that the error indicator ηK provides a lower bound
for the exact error on the patch K̃ plus some computable remainders (arising
from interpolation errors).

η2
K ≤ C((1 + k2)2‖eh‖2

curl,K̃
+ h2‖r̄ − r‖2

[L2(K̃)]3
+ h‖R̄−R‖2

[L2(∂K)]3). (4.56)

Using in addition Lemma 4.15 we state the main result of this section:

Theorem 4.16. The implicit a posteriori error estimate êh can be used as a
lower bound for the exact error with respect to the curl norm as follows:

‖êh‖curl,K ≤ C1ηK ≤ C((1 + k2)2‖eh‖2
curl,K̄ + h2‖r̄ − r‖2

[L2(K̄)]3 (4.57)

+ h‖R̄ − R‖2
[L2(∂K)]3)

1/2.

Proof We get the desired result immediately using the estimates (4.42) and
(4.56). ¥

Remarks
1. Up to the estimate (4.56) we kept track of the k-dependence in the estimates.
2. If the local divergence free property of the estimate êh is desirable (for ex-
ample, to ensure the equivalence of some norms in the error estimates [36]), one
should enforce this condition by projecting to a divergence free basis. Although
the finite element space that we used (see Section 4.2.1) consists of second or-
der elements as well, the choice of Vh should be done according to the above
requirement, when Eh is obtained using a higher order Nédélec space.
3. Another special situation occurs, if curl Eh = 0 then Rlj = 0. In this way,
one expects that the result in Theorem 4.16 can not be sharpened in the sense
that neither êh nor ηK will provide an upper bound for the error. In this case
the Helmholtz decomposition (see Lemma 4.5 in [73]) of Eh consists of only a
gradient which can be non-smooth. For the smoothness of the components in
the Helmholtz decomposition we refer to [5], Remark 2.16 and Theorem 2.17.
This is in a good agreement with the fact that in the proof of upper bounds in
residual based error estimation techniques one needs the regularity of solutions
([3], Section 2.2 and Section 3.2.3). This can fail for the present solution E, see
the test case in Section 5.1.2.
4. The remainder terms in Theorem 4.16 can make the estimate unsharp when
‖r̄ − r‖[L2(K)]3 and ‖R̄ − R‖[L2(∂K)]3 are of the same order as the residuals
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‖r‖[L2(K)]3 and ‖R‖[L2(∂K)]3 , respectively. This can happen if the right hand
side J is non-smooth or if we take a more general type of Maxwell equation
with discontinuous material coefficients. Then in an adaptive refinement tech-
nique we should generate Th in such a way that the solution in the subdomains
is smooth. If this is not possible (e.g. if we want to avoid the use of curvilin-
ear hexahedra) then some extra refinement should be performed in this critical
region.

4.5 Numerical results

In this section, we demonstrate the performance of the implicit error estima-
tor (4.11) applied to the time harmonic Maxwell equations. We consider the
Maxwell equations on a domain Ω which is taken to be a cubic domain or a
so-called Fichera cube, see Figure 4.9.

In order to be able to evaluate the discretization errors, we pick up a vector
field E, substitute it into the Maxwell equations and choose the source term J

such that E is the solution.

Recall that Eh denotes the numerical solution of the Maxwell equations (4.1)
obtained by using the edge finite elements given in Section 4.2.1. In the rest of
this section the elements of the tessellation Th are cubes with size h × h × h.

We verify the performance of the implicit error estimator for the Maxwell equa-
tions on three different test cases. The local problems (4.11) are solved by using
the numerical model discussed in Section 4.3.2.

Several aspects determine the usefulness of an a posteriori error estimator:

• The error estimator has to be able to find those areas in the domain where
the finite element solution has a large error, since this information is for
local mesh adaptation.

• The error estimator should be close in magnitude to the real error, both
locally and globally.

We check the performance of the implicit error estimator in the following way.
First, we check if the estimator provides the right type of error distribution in
the domain. Secondly, the magnitude of the global error estimate and its con-
vergence under mesh refinement are compared with the exact error.



94 Chapter 4: Implicit a posteriori error estimates

Define the exact error δK and the implicit local error estimate δ̂K on element
K as

δK = ‖E − Eh‖curl,K , δ̂K = ‖êh‖curl,K . (4.58)

The exact global error δ and the implicit global error estimate δh are obtained
by summing up the local contributions

δ =

(
∑

K∈Th

δ2
K

)1/2

, δh =

(
∑

K∈Th

δ̂2
K

)1/2

. (4.59)

4.5.1 Smooth solution

The first test case we consider are the Maxwell equations (4.1) on the domain
Ω = (0, 1)3 with the given source term J defined as

J(x, y, z) = (π2(p2 + m2) − 1)





sin(πpy) sin(πmz)
sin(πpz) sin(πmx)
sin(πpx) sin(πmy)



 , (4.60)

and which have a smooth exact solution

E(x, y, z) =





sin(πpy) sin(πmz)
sin(πpz) sin(πmx)
sin(πpx) sin(πmy)



 (4.61)

with p,m ∈ N.

In Figures 4.1 and 4.2 we plot the local errors (4.58) obtained with the implicit
error estimator and the exact error on a representative set of elements. The
error distribution diagram for the case p = 1,m = 1 is given in Figure 4.1 and
for the case p = 5,m = 1 the results are shown in Figure 4.2. The locations of
some elements where the error is computed in the mesh with mesh size h = 1

16
are shown in Figure 4.3. The labels on the horizontal axis in Figures 4.1 and
4.2 refer to the element numbers shown in Figure 4.3.
The error distribution obtained with the implicit error estimator shows a good
agreement with the exact results. In the case p = m = 1, where the analytic
solution has only one period in the domain, the error distribution is very close
to the exact one. For the case p =5,m =1, where the analytic solution is more
oscillatory, we observe that in some elements the distribution is slightly differ-
ent, but the scheme is still able to detect subdomains with relatively large errors.

The rate of convergence and a global estimate of the error (4.59) for the case
p = m = 1 are given in Figure 4.4. It shows the same convergence behavior
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Figure 4.1: Error distribution in the H(curl) norm for the smooth test case with
p = m = 1.
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Figure 4.2: Error distribution in the H(curl) norm for the smooth test case with
p = 5, m = 1.
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under mesh refinement as the analytic error. Also, the predicted error magnitude
is close to the true error.

4.5.2 Test case with singularities in the solution

Let us consider the domain Ω = (−1, 1)3 and the function

f : Ω → R with f = max{|x|, |y|, |z|}.

Define E : Ω → R as E := −∇f(x, y, z). Then E solves the following Maxwell
problem:

curl curl E − E = ∇f in Ω,

E × ν = 0 on ∂Ω.
(4.62)

In this example the right hand side function is in [L2(Ω)]3 but the exact solution

is not smooth, it is not even in [H
1
2 (Ω)]3. Therefore, theoretically we can not

guarantee even 1/2 order of convergence for the finite element solution. Nu-
merically we have observed almost 1/2 order convergence in the H(curl) norm,
see Figure 4.7. For a similar example we refer to [15], where ∇f was smooth
and the bilinear form BK remained coercive. However, compared to the results
given in [15], we could improve the accuracy of the estimator using the implicit
error estimation technique (see also Section 4.5.4).

The error distribution computed on different elements for different values of the
mesh size is depicted in Figure 4.5 and the plot of the global error estimator
is given in Figure 4.7. The location of the elements on a mesh with h = 1

8 is
depicted in Figure 4.6. The labels on the horizontal axis in Figure 4.5 refer to
the elements shown in Figure 4.6. We observe that the implicit error estimator
provides the same type of error distribution as the exact error and also the
estimates are close to the exact values. The convergence rate of the implicit
error estimator is of the same order as the exact error.

4.5.3 Fichera cube

In this subsection we analyze the method on the Fichera cube Ω = (−1, 1)3 \
[−1, 0]3. The solution on this domain has corner and edge singularities and can
serve as a difficult test case. The boundary conditions and the source term
in (4.1) are chosen such that the exact solution is E = grad(r2/3 sin(2

3φ)) in

spherical coordinates, with r =
√

x2 + y2 + z2, φ = arccos
r

z
. It is clear that E

does not belong to [H1(Ω)]3.
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Figure 4.5: Error distribution in the H(curl) norm for the singular test case.

The error distribution diagram is given in Figure 4.8. The large errors corre-
spond to those elements which are close to the Fichera corner, located in the
point (0, 0, 0), see Figure 4.9. The plot of the global error estimate is given in
Figure 4.10. As in the previous test cases, we observe a good agreement between
the implicit error estimator and the exact errors, both in the error distribution
and in the numerical values. The implicit error estimation is clearly capable
of providing a rather accurate error estimate for a range of smooth and non-
smooth flows, but even more important for an adaptation algorithm, it gives a
clear indication of those regions where the error is large. The numerical results
also show that the implicit error estimates are always bounded by the true error,
which was proven in Theorem 4.16.
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4.5.4 Comparisons with some existing schemes

In [15] Beck, Hiptmair et al. consider the following elliptic boundary value
problem

curl (χcurl E) + βE = J in Ω, (4.63)

E × ν = 0 on ∂Ω,

where χ and β are given positive functions on Ω.

We apply our implicit error estimator to (4.63) and compare the results with
those given in [15] and [16].

For comparison purposes we consider the first example given in [15] and [16] on
the domain Ω = (0, 1)3

In this example the parameter χ is set to one and different values of β are
taken into account. The exact solution is rather smooth and is given by E =
(0, 0, sin(πx)). Roughly speaking, the system (4.63) reduces to (4.1) if we choose
β = −k2 and no other changes were necessary to the algorithm discussed for
(4.1). Note, the bilinear form for this problem is coercive, contrary to the bilin-
ear form (4.5) discussed in this chapter which is indefinite.
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Figure 4.7: The global error estimate and the exact global error in the H(curl)
norm for the singular test case (Section 4.5.2).

For the finite element solution in the first example in [15] the authors start
with a coarse grid (level 0) consisting of 6 tetrahedrons, which is refined uni-
formly up to five levels. In [15] also an adaptive strategy has been presented
for other test cases, see Experiments 6-8 therein. In [16] a hierarchical type
(implicit) error estimator is applied using preconditioning for solving the global
problems for the error.

We make comparisons in terms of the effectivity index εh :=
δh

δ
, which gives the

ratio between the estimated and the true global error, where δ and δh are given
by (4.59). This quantity merely reflects the quality of the global estimate, while
we are mainly interested in local error estimates. The comparison table of the
effectivity of the estimators given in [15], [16] and the implicit error estimator
developed in this chapter are listed in Table 4.1. In comparison to the results
given in [15] and [16] the estimates obtained with the implicit error estimator
given by (4.11) are nearly insensitive to the value of β.

The above index is not capable to indicate the correlation between the distri-
bution of the estimated and the exact error, which influences the effectivity of
an adaptive technique. Therefore, we investigate a second quantity used for
the comparison, the so-called “fraction of incorrect decisions”, denoted by µ(1).
This measures how much the refinement controlled by the estimator differs from
the refinement based upon an “ideal” estimator. The indicator µ(1) is defined
using the following sets:
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Figure 4.8: Error distribution in the H(curl) norm on the Fichera cube.
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Figure 4.10: The global error estimate and the exact global error in the H(curl)
norm on the Fichera cube.
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Table 4.1: Comparison of the effectivity indices.

P
P

P
P

P
P

PP
β

Level
0 1 2 3 4 5

10−4 4.05 8.05 8.18 8.24 8.27 8.29
10−2 4.05 8.05 8.17 8.23 8.27 8.29

1 3.01 7.64 7.78 7.84 7.87 7.89
102 2.29 4.27 4.70 4.95 5.20 5.26
104 2.33 4.23 4.66 4.86 4.95 5.00

Effectivity index εh for the error estimator given in [15].

P
P

P
P

P
P

PP
β

Level
0 1 2 3 4 5

10−4 0.55 0.82 0.92 0.96 0.98 0.99
10−2 0.55 0.82 0.92 0.96 0.98 0.99

1 0.56 0.83 0.92 0.95 0.97 0.98
102 0.71 0.87 0.92 0.91 0.90 0.90
104 0.72 0.88 0.93 0.94 0.94 0.93

Effectivity index εh for the Gauss-Seidel-based hierarchical error estimator given in [16].

H
H

H
H

H
β

h 1

4

1

8

1

16

1

32

1

64
10−4 0.67 0.67 0.67 0.67 0.67
10−2 0.67 0.67 0.67 0.67 0.67

1 0.67 0.67 0.67 0.67 0.67
102 0.63 0.65 0.67 0.67 0.67
104 0.44 0.37 0.40 0.53 0.63

Effectivity index εh for the implicit error estimator given by (4.11).

The set of elements marked for refinement by the error estimator are defined as

Â :=

{

K ∈ Th : δ̂2
K > σ

δ2
h

nK

}

,

where σ = 0.95 and nK denotes the number of elements in the tessellation Th,
and the set of elements that should have been marked

A :=

{

K ∈ Th : δ2
K > σ

δ2

nK

}

.
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Table 4.2: Comparison of the “incorrect decisions”.

P
P

P
P

P
P

PP
β

Level
0 1 2 3 4 5

10−4 0.33 0.17 0.12 0.1 0.1 0.085
10−2 0.33 0.17 0.12 0.1 0.1 0.086

1 0.33 0.25 0.18 0.14 0.13 0.13
102 0 0.42 0.088 0.14 0.15 0.16
104 0 0.44 0.11 0.15 0.16 0.16

Fraction of incorrect decisions µ
(1) for the error estimator given in [15].

H
H

H
H

H
β

h 1

4

1

8

1

16

1

32

1

64
10−4 0 0 0 0 0
10−2 0 0 0 0 0

1 0 0 0 0 0
102 0 0 0 0 0
104 0.25 0.31 0.07 0.00 0.03
Fraction of incorrect decisions µ

(1) for the implicit error estimator given by (4.11).

Then the indicator µ(1) is defined as

µ(1) :=
1

nK
#

{

(A ∩ Âc) ∪ (Ac ∩ Â)
}

, (4.64)

where for any set S ⊂ Th the compliment with respect to Th is denoted by Sc.
In [15] satisfactory performance of the estimator means that µ(1) stays bounded
below 1 as refinement proceeds. The results are given in Table 4.2. For the
implicit estimator this parameter is close to 0, which shows a much better
performance than that given in [15]. In other words it means that the implicit
error estimator developed in this chapter is able to find almost all elements
which need refinement. The error indicator from [15] gives between 8.5% and
16% error (µ(1) · 100%) on the finest mesh, see Table 4.2.

4.6 Conclusions and further works

In Chapter 4 we have developed and analyzed an implicit a posteriori error
estimation technique for the time harmonic Maxwell equations. The algorithm
is well suited both for cases where the bilinear form is coercive and for the
more complicated indefinite case. A nice feature of the implicit error estimator
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is that no unknown constants appear. The algorithm is tested on a number of
increasingly complicated test cases and the results show that it gives an accurate
prediction of the error distribution and the local and global error. Also, in
comparison with other a posteriori error estimation techniques [15, 80], for all
considered tests it gives a sharper estimate of the error and its distribution.
In future work we will apply the implicit a posteriori error estimator in an
adaptive algorithm and also consider different types of elements including the
effect of mesh deformation on hexahedral elements.

4.7 Appendix

For the proof of Lemma 4.12 we recall some notations and results from linear
algebra.

If the symmetric matrix A is positive semidefinite, we shortly write it as A ≥ 0,
while A > 0 is used for positive definite symmetric matrices. We use the fact
that the maximal eigenvalue λA,max of a symmetric matrix A ∈ Rn×n can be
characterized as

λA,max = max
u∈R

n

|u|=1

(Au,u) (4.65)

and similarly, for the minimal eigenvalue λA,min of A

λA,min = min
u∈R

n

|u|=1

(Au,u), (4.66)

where (·, ·) yields the standard scalar product in Rn. We will use also the no-
tation λ+

A,min > 0 for the minimal nonzero eigenvalue of a positive semidefinite
matrix A.

For the proof of Lemma 4.12 we need the following linear algebraic estimate.

Lemma 4.17. Assume that k ∈ R and the symmetric matrices A ≥ 0, B > 0
in Rn×n are given such that ker A is an invariant space of B. Then, there are
constants c, h0 ∈ R+ such that for any h with 0 < h < h0 and any u ∈ Rn there
is a v ∈ Rn such that

|(( 1

h2
A − k2B)u,v)|2 ≥ c((

1

h2
A + B)u,u)((

1

h2
A + B)v,v). (4.67)

Proof In the proof we assume that k ≥ 1, the remaining case can be handled in
the same way; we have only to consider k2B instead of B.
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According to the assumptions every u ∈ Rn can be decomposed as u = u1 +u2,
where u1 ∈ ker A and u2⊥ ker A. Note that according to the assumptions,
Bu1 ∈ ker A and therefore, (Bu1,v2) = 0 for all v2⊥ ker A.

We distinguish two cases:

Case 1. u1 = 0. Then we can choose v = u = u2 and h0 such that

k2λB,max ≤ 1

2h2
0

λ+
A,min. (4.68)

In this way, the characterizations in (4.65) and (4.66) imply that for any 0 < h <
h0 the eigenvalues of the matrix 1

h2 A− k2B will be positive and their minimum

is at least 1
2h0

λ+
A,min. With these the left hand side of (4.67) can be estimated

as

|(( 1

h2
A − k2B)u2,u2)|2 ≥ (

1

2h2
0

λ+
A,min|u2|2)2.

The scalar products on the right hand side of (4.67) can be also estimated (using
(4.68)) as follows:

((
1

h2
A + B)u,u)((

1

h2
A + B)v,v) = ((

1

h2
A + B)u2,u2)((

1

h2
A + B)u2,u2)

≤ (
2

h2
0

λA,max|u2|2)2.

Therefore, the choice c =

(

1
4

λ+
A,min

λA,max

)2

is appropriate in the first case.

Case 2. u1 6= 0. We choose now v = u1 − u2. The left hand side of (4.67) can
be then rewritten as

|(( 1

h2
A − k2B)u,v)|2

= |(( 1

h2
A − k2B)(u1 + u2),u1 − u2)|2

= |(( 1

h2
A − k2B)u1,u1) − ((

1

h2
A − k2B)u2,u2)|2

= | − k2(Bu1,u1) − ((
1

h2
A − k2B)u2,u2)|2

= k4|(Bu1,u1)|2 + 2k2(Bu1,u1)((
1

h2
A − k2B)u2,u2)

+ |(( 1

h2
A − k2B)u2,u2)|2.

(4.69)
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The right hand side of (4.67) can be simplified according to the following equal-
ity:

((
1

h2
A + B)u,u)((

1

h2
A + B)v,v)

= ((
1

h2
A + B)(u1 + u2),u1 + u2)((

1

h2
A + B)(u1 − u2),u1 − u2)

= ((Bu1,u1) + ((
1

h2
A + B)u2,u2))

2

= |(Bu1,u1)|2 + 2(Bu1,u1)((
1

h2
A + B)u2,u2) + |(( 1

h2
A + B)u2,u2)|2.

(4.70)
Comparing (4.69) and (4.70), using the fact that k ≥ 1, the positive definiteness
of B and choosing c = 1

2 , then a sufficient condition for the inequality to hold
is that we need an h0 such that for any h with 0 < h < h0 and for all Rn ∋
u2⊥ ker A the following inequality holds:

((
1

h2
A − k2B)u2,u2) ≥

1

2
((

1

h2
A + B)u2,u2).

We need in fact that the matrix 1
2h2 A − (k2 + 1

2 )B is positive semidefinite.
According to Case 1 this holds whenever h0 is chosen according to the inequality

(k2 +
1

2
)λB,max ≤ 1

2h2
0

λ+
A,min. (4.71)

Comparing the estimates in (4.68) and (4.71) gives that the choice

h2
0 ≤ 1

2k2 + 1

λ+
A,min

λB,max
(4.72)

is sufficient in both cases. ¥

Using this result we can prove Lemma 4.12.

Proof of Lemma 4.12. Using the notations introduced in Section 4.4.2 and a
simple change of variables we obtain that the mass matrix on a cube K with
edge length h can be written as

B1,K =
1

h
B1,curl − k2hB1,0

and accordingly, for u =
∑n

i=1 uiφi ∈ Vh and v =
∑n

i=1 viφi ∈ Vh

BK(u,v) = ((
1

h
B1,curl − k2hB1,0)(u1, u2, . . . , un)T , (v1, v2, . . . , vn)T ) (4.73)
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In the same way,

‖u‖2
curl,K = ((

1

h
B1,curl + hB1,0)(u1, u2, . . . , un)T , (u1, u2, . . . , un)T ). (4.74)

Substituting (4.73) and (4.74) into the desired inequality (4.40) we have to find
positive constants h0 and a C0 > 0 such that for any 0 < h < h0 and any
u ∈ Rn there is a v ∈ Rn such that

C0((
1

h
B1,curl−k2hB1,0)u,v)2 ≥ ((

1

h
B1,curl+hB1,0)u,u)((

1

h
B1,curl+hB1,0)v,v).

(4.75)
Dividing both sides with h2, we can apply Lemma 4.17 with A = B1,curl and
B = B1,0. For this, we have to check that the conditions in Lemma 4.17 hold.

A lenghty computation gives that

B1,curl =
1

1080

















8 4 −1 1 −1 1 2 0 0
4 8 1 −1 1 −1 2 0 0
−1 1 8 4 −1 1 0 2 0
1 −1 4 8 1 −1 0 2 0
−1 1 −1 1 8 4 0 0 2
1 −1 1 −1 4 8 0 0 2
2 2 0 0 0 0 4/5 0 0
0 0 2 2 0 0 0 4/5 0
0 0 0 0 2 2 0 0 4/5

















and

B1,0 =
1

1080

















2/5 1/5 0 0 0 0 1/10 0 0
1/5 2/5 0 0 0 0 1/10 0 0
0 0 2/5 1/5 0 0 0 1/10 0
0 0 1/5 2/5 0 0 0 1/10 0
0 0 0 0 2/5 1/5 0 0 1/10
0 0 0 0 1/5 2/5 0 0 1/10

1/10 1/10 0 0 0 0 1/25 0 0
0 0 1/10 1/10 0 0 0 1/25 0
0 0 0 0 1/10 1/10 0 0 1/25

















.

By definition, for any vector u = (u1, u2, . . . , un) ∈ Rn

(B1,curlu,u) = (curl

9∑

i=1

uiφ
0
i , curl

9∑

i=1

uiφ
0
i )[L2(K̂)]3 = ‖curl

9∑

i=1

uiφ
0
i ‖2

[L2(K̂)]3
,

(4.76)
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where the basis {φ0
i }9

i=1 is defined in (4.3.2). Similarly,

(B1,0u,u) = (

9∑

i=1

uiφ
0
i ,

9∑

i=1

uiφ
0
i )[L2(K̂)]3 = ‖

9∑

i=1

uiφ
0
i ‖2

[L2(K̂)]3
,

which show that B1,curl ≥ 0 and B1,0 > 0. Moreover (4.76) gives that for any
nonzero vector u ∈ Rn the condition (B1,curlu,u) = 0 can only be fulfilled if

curl
∑9

i=1 uiφ
0
i = 0.

In order to determine such a linear combination, observe that an arbitrary
element Φ̂ in the finite dimensional bubble function space V̂ given in (4.3.2) can
be written as

Φ̂(ξ, η, ζ) =





(a1ξ
2 + b1ξ + c1)η(1 − η)ζ(1 − ζ)

ξ(1 − ξ)(a2η
2 + b2η + c2)ζ(1 − ζ)

ξ(1 − ξ)η(1 − η)(a3ζ
2 + b3ζ + c3)





and accordingly,

curl Φ̂(ξ, η, ζ)

=





ξ(1 − ξ)(1 − 2η)(a3ζ
2 + b3ζ + c3) − ξ(1 − ξ)(a2η

2 + b2η + c2)(1 − 2ζ)
(a1ξ

2 + b1ξ + c1)η(1 − η)(1 − 2ζ) − (1 − 2ξ)η(1 − η)(a3ζ
2 + b3ζ + c3)

(1 − 2ξ)(a2η
2 + b2η + c2)ζ(1 − ζ) − (a1ξ

2 + b1ξ + c1)(1 − 2η)ζ(1 − ζ)



 .

This can be zero on K̂ if the following equalities hold:

(1 − 2η)(a3ζ
2 + b3ζ + c3) = (a2η

2 + b2η + c2)(1 − 2ζ),

(a1ξ
2 + b1ξ + c1)(1 − 2ζ) = (1 − 2ξ)(a3ζ

2 + b3ζ + c3),

(1 − 2ξ)(a2η
2 + b2η + c2) = (a1ξ

2 + b1ξ + c1)(1 − 2η).

Here using the first equation we obtain that

a2 = a3 = 0,
b2

c2
=

b3

c3
= −2, b2 = b3, c2 = c3

or, alternatively, a2 = a3 = b2 = c2 = b3 = c3 = 0. Similarly, the second one
gives that

a3 = a1 = 0,
b3

c3
=

b1

c1
= −2, b3 = b1, c3 = c1

or, alternatively, a1 = a3 = b3 = c3 = b1 = c1 = 0. The third equation is
trivially satisfied with these coefficients. We may assume that c1 = 1 and in
this way, c1 = c2 = c3 = 1 and b1 = b2 = b3 = −2. This gives the eigenfunction

(ξ, η, ζ) →





(1 − 2ξ)η(1 − η)ζ(1 − ζ)
ξ(1 − ξ)(1 − 2η)ζ(1 − ζ)
ξ(1 − ξ)η(1 − η)(1 − 2ζ)



 (4.77)
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which is a linear combination
∑9

i=1 uiΦ
0
i , with u = (1,−1, 1,−1, 1,−1, 0, 0, 0)T .

This gives that ker B1,curl = span (1,−1, 1,−1, 1,−1, 0, 0, 0), which is an invari-
ant space of B1,0 since B1,0(kerB1,curl) = kerB1,curl. In this way, the conditions
in Lemma 4.17 are fullfilled for A = B1,curl and B = B1,0, which gives the
statement in Lemma 4.12. ¥

Proof of Lemma 4.13. Symbolic calculations give that λ+
B1,curl,min = 4

675 −
√

246
2700

and λB1,0,max = 1
3375 +

√
246

54000 .

Using the above numerical results and substituting them into (4.72) we obtain
the statement of Lemma 4.13. ¥

Remarks 1. In the proof of Lemma 4.12 we determined that the kernel of
the curl operator in the bubble function space is the one dimensional subspace
generated by the function in (4.77). This coincides with the subspace of the
bubble function space which consists of discrete gradients, namely (4.77) is the
gradient of the function given by

(ξ, η, ζ) → (ξ(1 − ξ), η(1 − η), ζ(1 − ζ)).

2. The reason why we did not include k into the matrix B in Lemma 4.17 is
that we wanted to demonstrate the dependence of the mesh size parameter h0

on k.
3. An easy calculation gives that for K = (0, h)3 the condition number of B1,K

is proportional to h−2. However, this does not harm the solution of the local
problem due to Lemma 4.12.





CHAPTER 5

Adaptive finite element techniques for the Maxwell
equations using implicit a posteriori error estimates

For the adaptive solution of the Maxwell equations with Nédélec edge finite ele-
ment methods on three-dimensional domains, we consider an implicit a posteri-
ori error estimation technique. On each element of the tessellation an equation
for the error is formulated and solved with a properly chosen local finite ele-
ment basis. The discrete bilinear form of the local problems is shown to satisfy
an inf-sup condition which ensures the well posedness of the error equations.
An adaptive solution algorithm is developed based on the obtained error esti-
mates. The performance of the method is tested on various problems including
non-convex domains with non-smooth boundaries. The numerical results show
that the estimated error, computed by the implicit a posteriori error estimation
technique, correlates well with the actual error. On the meshes generated adap-
tively with the help of the error estimator, a higher accuracy is achieved than
on globally refined meshes. Moreover, the rate of the error convergence on the
locally adapted meshes is faster than that on the globally refined meshes.

5.1 Introduction

In many real life problems (for example scattering problems, optical fibers,
design of antennas) it becomes increasingly important to solve the full set of
Maxwell equations on complex three-dimensional domains. Due to the com-
plexity of the domains the solution of the Maxwell equations frequently has
limited regularity, such as singularities near corners and non-convex edges [33],
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and efficient solution methods require adaptive techniques in order to capture
detailed structures.

A posteriori error estimation techniques to control the adaptation process in
finite element methods have become popular tools for the numerical solution
of partial differential equations, see e.g. [3, 10, 11, 78, 104], and are also im-
portant for the Maxwell equations. A crucial requirement for a posteriori error
estimation techniques is that they provide an accurate estimate of the error
throughout the finite element mesh. The a posteriori error estimate is then
used to generate meshes locally finer in areas where the mesh resolution is not
sufficient to achieve the required accuracy. For wave type problems, in par-
ticular for the Maxwell equations this is, however, only possible if we use a
sufficiently fine mesh compared to the wave length. In this case, the major part
of the computational error arises from the boundary singularities. Otherwise,
the pollution effect can make the a posteriori error estimates unreliable [7] and
a further careful analysis is needed to estimate the pollution error separately [8].
There are basically two types of a posteriori error estimation methods, namely
explicit and implicit techniques.

Explicit error estimation techniques provide an upper bound for the local error
residual based on the numerical solution (see e.g. [9, 10, 104]), but generally
contain an unknown constant and as such are frequently not sharp and do not
provide computable error bounds. There are several techniques to obtain explicit
bounds for the unknown constant term (see e.g. [27]), but in most applications
the estimates are somewhat pessimistic, hence the resulting estimators tend to
be unrealistic and fail to detect the more subtle nuances of the specific prob-
lem. Several applications of adaptive methods with an explicit error estimation
technique for the Maxwell equations can be found in [15, 20, 28, 83, 84].

Implicit error estimators seek to avoid these disadvantages by retaining the
structure of the original equation as far as possible. The idea of implicit a
posteriori error estimates is to formulate local problems for the error function,
either over a single element or over a small patch of elements, with suitably
chosen boundary conditions and then solve them with an appropriate finite ele-
ment method [1, 3]. This technique can provide reliable estimates, but one has
to solve additional, small boundary value problems. Beyond the standard ellip-
tic case it has been applied for flow problems in two-dimensional domains [70]
and for the Maxwell equations with a coercive bilinear form [16]. The numerical
experiments in [21, 81] for the time harmonic Maxwell equations suggest the im-
plicit error estimation technique as a promising approach. Moreover, in [36, 85]
equilibration techniques have been applied in case of higher order elements, but
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a precise analysis of this method is still lacking.

In [65, 66], see also Chapter 4, we developed an implicit a posteriori error es-
timation technique for the time harmonic Maxwell equations on a cubic mesh
and proved well posedness of the local problems (without any post-processing)
with suitably chosen boundary conditions. We also pointed out that this gives
a lower bound for the analytic error.

The main goal of this chapter is to apply the implicit error estimation technique
in an adaptive mesh refinement algorithm. We perform the adaptation on a
tetrahedral mesh, which requires some modifications in the analysis compared
to Chapter 4 and [65, 66]. As a natural choice for the finite element spaces we
use Nédélec first order edge basis functions. Then we define a weak formulation
for the error in each element, which is solved with a finite element method. The
local problems formulated for the error are solved with second order Nédélec
elements without the linear part. The use of higher order elements to solve the
local error equations is essential to obtain a good approximation of the true er-
ror and also reduces the pollution effect discussed in [7, 8]. In various test cases
(on non-convex domains with singular solutions) we verify the performance of
the implicit error estimation technique. Provided that the mesh resolution is
fine enough we show that the method is capable of detecting regions with a rel-
atively large error and, based on this information and using an adaptive mesh
generation technique, we are able to achieve a smaller error on adaptively gen-
erated meshes than on globally refined meshes. Also, the reduction of the error
using the adaptation procedure based on the implicit error estimation technique
is faster than that on globally refined meshes.

An important issue for adaptive methods is how to adapt a mesh while maintain-
ing mesh quality. In particular, it is important to choose a selection algorithm
for the subdomains where finer elements are needed. Here we would like to men-
tion that there is no best algorithm for marking elements and several options
are discussed in Section 5.6. For more information about refinement strategies
we refer to [4, 39, 89, 98, 14]. In all our numerical experiments we use the
Centaur mesh generator [29] with so called source based mesh generation (see
Section 5.6) depending on the selection of a fixed fraction of elements for mesh
adaptation. This approach tries to make the local mesh finer in specified re-
gions while preserving the high quality of the mesh. One of the advantages of
the Centaur mesh generator is that it creates adaptive meshes without hanging
nodes. Meshes without hanging nodes are necessary for Nédélec type elements,
otherwise these elements are not well defined. Another desirable property of
this mesh generator is that it avoids elements with large dihedral angles, which
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is important for accuracy requirements.

This chapter is organized as follows: in Section 5.2 we present the Maxwell
equations, their weak formulation and define the finite element discretization.
Section 5.3 describes the implicit error estimation technique with a properly
chosen local finite element space. The inf-sup condition for the local error
formulation is proven in Section 5.4 using a Poincaré type inequality (Lemma
5.5). A similar result for quasi uniform subdomains is available in [53], Lemma
4.1. We also investigate the frequency dependence of the parameters in the
estimates. An efficiency analysis of the method is presented in Section 5.5.
In Section 5.6 we discuss several adaptation strategies. The performance of
the implicit error estimation technique is investigated for various test cases
including non-convex domains in Section 5.7. Finally, conclusions are drawn in
Section 5.8.

5.2 Mathematical formalization

Consider the time harmonic Maxwell equations for the electric field E :Ω→ R3

with perfectly conducting boundary conditions:

curl curl E − k2E = J in Ω, (5.1a)

E × ν = 0 on ∂Ω, (5.1b)

where Ω ⊂ R3 is a Lipschitz domain with outward normal vector ν and J ∈
[L2(Ω)]3 a given source function. The wave number k relates to the frequency ω
and the velocity of the wave propagation c as k = ω

c . The velocity of wave prop-
agation is given as c = 1√

εµ , where the dielectric permittivity ε = ε0εr and the

magnetic permeability µ = µ0µr are material properties. The free space dielec-
tric permittivity and magnetic permeability are defined by ε0 = 1

36π 10−9 Fm−1

and µ0 = 4π10−7 Hm−1, respectively [73]. The dimensionless parameters εr and
µr are material dependent and called relative permittivity and relative perme-
ability, respectively.

In this chapter we consider the dimensionless Maxwell equations to avoid prob-
lems with floating point arithmetic when working with very large numbers. How
to make the Maxwell equations dimensionless is explained in e.g. [73].

In the subsequent derivations we will need the following Hilbert space corre-
sponding to the Maxwell equations

H(curl,Ω) = {u ∈ [L2(Ω)]3 : curl u ∈ [L2(Ω)]3},
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which is equipped with the curl norm

‖u‖curl,Ω = (‖u‖2
[L2(Ω)]3 + ‖curl u‖2

[L2(Ω)]3)
1/2. (5.2)

The differential operator curl is understood in a distributional sense. While
analyzing (5.1), usually a subspace of H(curl,Ω) is used, namely

H0(curl,Ω) = {u ∈ H(curl,Ω) : ν × u|∂Ω = 0},

where ν × u|∂Ω denotes the extension of the tangential trace to non smooth
functions [73].

For the weak formulation of (5.1) we introduce the following bilinear form

B : H(curl,Ω) × H(curl,Ω) → R

with
B(u,v) = (curl u, curl v) − k2(u,v).

Similarly, the bilinear form BK is defined in the same way but now on the
subdomain K ⊂ Ω (instead of Ω). For the corresponding [L2(Ω)]3 scalar product
on the domain K and at its boundary ∂K the notations (·, ·)K and (·, ·)∂K are
used, respectively. In the same way, the curl norm on K is defined by

‖u‖curl,K = (‖u‖2
[L2(K)]3 + ‖curl u‖2

[L2(K)]3)
1/2.

Using the above notations the weak formulation of the time harmonic Maxwell
equations (5.1) is: for a given source function J , find E ∈ H0(curl,Ω) such that
for all v ∈ H0(curl,Ω) the following relation is satisfied

B(E,v) = (J ,v). (5.3)

5.2.1 Finite elements in H(curl): First order edge ele-

ments

For the numerical solution of (5.3) we use the H(curl) conforming edge finite
element method proposed by Nédélec [76] for tetrahedral elements.

It is convenient to define the finite elements first on a reference element, which
in our case is a tetrahedron K̂ with nodes X̂1, X̂2, X̂3, X̂4, see Figure 5.1, where

X̂1 = (0, 0, 0), X̂2 = (1, 0, 0), X̂3 = (0, 1, 0), X̂4 = (0, 0, 1).

The first order Nédélec elements are defined on the reference element K̂ as

W 0
i = (Li1∇Li2 − Li2∇Li1)li, i = 1, . . . , 6,
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Figure 5.1: The reference tetrahedron (left) and tetrahedron in physical space
(right).

where Lj is the Lagrange basis function corresponding to node j of K̂, li the
length of edge i, and i the edge number associated with the nodes i1 and i2 (see
Table 5.1). In more explicit form this basis reads

W 0
1 = (1 − η − ζ, ξ, ξ)

T
, W 0

2 = (η, 1 − ξ − ζ, η)
T

,

W 0
3 = (ζ, ζ, 1 − ξ − η)

T
, W 0

4 =
√

2 (−η, ξ, 0)
T

,

W 0
5 =

√
2 (ζ, 0,−ξ)

T
, W 0

6 =
√

2 (0,−ζ, η)
T

,

with (ξ, η, ζ) the local coordinates on K̂.

A detailed construction of Nédélec basis functions can be found, for example, in
[73]. Next, we introduce a tetrahedral tessellation Th of Ω with N elements and
Ne edges. The basis defined on the reference element K̂ can be transformed to
an arbitrary tetrahedron K ∈ Th using the isoparametric mapping

DK : (ξ, η, ζ) ∈ K̂ 7→ (x, y, z) =

4∑

i=1

XiLi(ξ, η, ζ) ∈ K, (5.4)

provided that this mapping is a diffeomorphism. Here Xi = (xi, yi, zi) denote
the nodes of K. We numerate the nodes in K̂ and K such that Xi = DK(X̂i).
It is well known that the covariant transformation preserves line integrals un-
der a change of coordinates [73, 90], so that the basis functions for a given
tetrahedron K can be defined as

wj(x, y, z) = (dD−1
K )T W 0

j (ξ, η, ζ), j = 1, . . . , 6, (5.5)
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Table 5.1: Edge and face enumeration.

Edge # Node i1 Node i2
1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

Face # Node i1 Node i2 Node i3
1 2 3 4
2 1 3 4
3 1 2 4
4 1 2 3

where dDK is the Jacobian of the transformation DK .

We denote by Wh ⊂ H(curl,Ω) the space of Nédélec first order edge basis
functions:

Wh = span {wj(x, y, z) | all edges j = 1, . . . , Ne in Th} ,

where each basis function wj(x, y, z) is defined with respect to edge j according
to (5.5). The discretized version of (5.3) reads:

For given source function J , find Eh ∈ Wh, such that for all W ∈ Wh the
following relation is satisfied

B(Eh,W ) = (J ,W ). (5.6)

5.3 Implicit error estimation

In this section we formulate the implicit error estimation method to estimate
the error in each element of the domain. Also, appropriate local basis functions
and boundary conditions are considered for the numerical solution of the local
problems.

5.3.1 Formulation of the local error equation

Assume that Eh is a numerical solution computed using first order Nédélec el-
ements. We aim to estimate the computational error eh = (E − Eh)|K on an
element K ∈ Th, with Th the finite element tessellation. For this we state a
variational problem for the local error (see [65, 66]) on element K as follows:
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Find eh ∈ H(curl,K) such that for all v ∈ H(curl,K) the following relation is
satisfied

BK(eh,v) = (curl eh, curl v)K − k2(eh,v)K

= (curl (E − Eh), curl v)K − k2(E − Eh,v)K (5.7)

= (curl E, curl v)K − k2(E,v)K − ((curl Eh, curl v)K − k2(Eh,v)K)

= (curl curl E,v)K − (ν × curl E,v)∂K − k2(E,v)K − BK(Eh,v)K

= (J ,v)K − (ν × curl E,v)∂K − BK(Eh,v),

where a Green’s identity is applied in the fourth line and (5.1a) is used in the
last line. In order to get a computable right hand side in (5.7) we use the
approximation

ν × curl E ≈ ν × ĉurl E on interelement faces, (5.8)

instead of using the unknown exact value ν × curl E. The quantity ν × curl E

will henceforth be called the natural boundary data. The following variational
problem for the error on element K can now be formulated:

For a given source function J and numerical solution Eh, find êh ∈ H(curl,K)
such that for all v ∈ H(curl,K) the following relation is satisfied

BK(êh,v) = (J ,v)K − (ν × ĉurl E,v)∂K − BK(Eh,v). (5.9)

5.3.2 Numerical solution of the local error equation

We will now give a discretized form of the local problem (5.9) which requires a
specific choice for the approximation (5.8) of the natural boundary conditions
and the finite element basis on element K.

Approximation of the natural boundary conditions

We first specify the approximation in (5.8). For the definition of the boundary
conditions for the local error equation (5.7) we introduce fj , the common face
of the two neighboring elements K and Kj , and νj the outward normal on fj

with respect to K. We approximate ν × curl E on fj with the average of the
tangential traces of the numerical approximation Eh on its two sides K and Kj .
That is we shall use the approximation

νj × curl E|fj
≈ 1

2
(νj ×

[
curl Eh|∂K∩fj

+ curl Eh|∂Kj∩fj

]
), (5.10)
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which can be straightforwardly implemented. It remains to supply the bound-
ary conditions for (5.7) on elements which have a boundary face connected to
the boundary of Ω.

Suppose that element K intersects with a portion of the boundary of the domain
Ω where perfectly conducting boundary conditions are imposed. The appropri-
ate boundary condition for the local error equation (5.7) is then

ν × êh = 0 on ∂K ∩ ∂Ω. (5.11)

Here, it is assumed that the finite element approximation has been constructed
so that the perfectly conducting boundary conditions are satisfied exactly, for
details see [3].

Choice of the local basis

As discussed in [3], Section 3.4.2, the finite dimensional space used to discretize
the local error equations (5.9) has to be selected carefully. In case of elliptic
boundary value problems a different local basis is considered in [3] for the solu-
tion of the local error equations. It is advocated there that the use of different
basis functions than those used for the original problem results in a better ap-
proximation of the error. For the Maxwell equations it is also beneficial to use
higher order polynomials for the error equation which is explained by the fact
that the dominant term in the error is associated with polynomials of a degree
which is one order higher than used to approximate the field, see [21, 81, 85]. In
our numerical experiments we observe similar phenomena. If we use first order
Nédélec elements to solve the local problems then the computed error does not
describe the true error and leads to a non-physical solution. If we use the full
second order Nédélec elements again the obtained results are poor, see Section
5.7.4. This is due to the linear part present in the basis. Therefore, as a basis
for the solution of the local error equations, we use the second order Nédélec
edge basis functions with the linear basis functions removed.

Again, the basis functions for the local problem are first defined on a reference
tetrahedron and then with the covariant transformation (5.5) transformed to
the physical elements. There are eight face based basis functions defined as

φ0
1 = L2L3∇L4 − L2L4∇L3, φ0

2 = L2L3∇L4 − L3L4∇L2,

φ0
3 = L1L3∇L4 − L1L4∇L3, φ0

4 = L1L3∇L4 − L3L4∇L1,

φ0
5 = L1L2∇L4 − L1L4∇L2, φ0

6 = L1L2∇L4 − L2L4∇L1,

φ0
7 = L1L2∇L3 − L1L3∇L2, φ0

8 = L1L2∇L3 − L2L3∇L1,
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or, in more explicit form,

φ0
1 = (0,−ξζ, ξη)

T
, φ0

2 = (−ηζ, 0, ξη)
T

,

φ0
3 = (0,−(1 − ξ − η − ζ)ζ, (1 − ξ − η − ζ)η)

T
, φ0

4 = (ηζ, ηζ, (1 − ξ − η)η)
T

,

φ0
5 = (−(1 − ξ − η − ζ)ζ, 0, (1 − ξ − η − ζ)ξ)

T
, φ0

6 = (ξζ, ξζ, (1 − ξ − η)ξ)
T

,

φ0
7 = (η(1 − ξ − η − ζ), ξ(1 − ξ − η − ζ), 0)

T
, φ0

8 = (ξη, (1 − ξ − ζ)ξ, ξη)
T

.

These basis functions are transformed to a tetrahedron K ∈ Th with the covari-
ant transformation as

φj(x, y, z) = (dD−1
K )T φ0

j (ξ, η, ζ), j = 1, . . . , 8, (5.12)

with DK the transformation defined in (5.4). This reduced finite element space
on an element K is denoted by N 2

2 (K):

N 2
2 (K) = span{φj}j=1,...,8.

For more details on the construction of second order Nédélec elements we refer
to [73, 93].

Weak form of the local error equation

Using approximation (5.10) and the local basis N 2
2 (K) we obtain the discrete

form of the local error equation (5.9):

For a given source function J and numerical solution Eh, find êh ∈ N 2
2 (K)

such that for all w ∈ N 2
2 (K) the following relation is satisfied

(curl êh, curl w)K − k2(êh,w)K = (J ,w)K − (curl Eh, curl w)K

+k2(Eh,w)K − 1

2
(νj ×

(
curl Eh|K + curl Eh|Kj

)
,w)∂K .

(5.13)

5.3.3 Properties of the local error estimator

We investigate the existence and uniqueness of the local error estimate and state
that it provides a lower bound (up to a constant) for the exact error eh.

Well posedness of the local error equation

Using a lifting operator we can associate an ēh to êh and define a function
ĴK ∈ [L2(Ω)]3 such that the well posedness of (5.9) is equivalent with that of
the variational problem:
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Find an ēh ∈ H(curl,K) such that for all v ∈ H(curl,K) the following relation
is satisfied

BK(ēh,v) = (ĴK ,v). (5.14)

For the details we refer to Section 4.3.3 or [65, 66], Section 3.3.1.

The well posedness of (5.14) is stated in the following:

Lemma 5.1. Assume that k is not a Maxwell eigenvalue on K in the sense
that only u = 0 ∈ H(curl,K) satisfies the relation

BK(u,v) = 0, ∀v ∈ H(curl,K).

Then the variational problem (5.14) has a unique solution.

For the proof we refer to Section 4.3.3 or [65, 66], Section 3.3.3.

In order to apply Lemma 5.1 we need to ensure that k is not a Maxwell eigen-
value on K for all kind of tetrahedra arising in the finite element tessellation Th.
Instead of performing a detailed analysis for this, we rather ensure well posed-
ness for the discretized problems in (5.14) by proving an inf-sup condition, which
is discussed in Section 5.4.

Efficiency of the local error estimate

We state that the error estimate êh is efficient which means that it is bounded
by the analytic error plus higher order terms (for a precise definition see [26]).
For this we use the notations:

rK = J − curl curl Eh + k2Eh in K

for the residual within the subdomain K and

Rlj =
1

2
(νj ×

[
curl Eh|K − curl Eh|Kj

]
)

for the tangential jump of the curl at the common face lj of K and Kj . We
also introduce r̄ as the approximation of r in the finite element space N 2

2 (K).
Similarly, R̄ denotes the approximation of R on ∂K with the trace of functions
in N 2

2 (K) and the patch K̃ of K is defined as follows:

K̃ = {∪Ki : Ki ∈ Th,K ∩ Ki 6= ∅}.
Theorem 5.2. If diam K = h < h∗

k for some positive constant h∗ then the
error estimate êh is efficient,

‖êh‖2
curl,K ≤ C((1 + k2)2‖eh‖2

curl,K̃
+ h2‖r̄ − r‖2

[L2(K)]3 + h‖R̄ − R‖2
[L2(∂K)]3),

(5.15)
where C does not depend on h.
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The proof is postponed to Section 5.5.

5.4 Inf-sup condition for the implicit error esti-

mator

In this section we show that the computations using the implicit error estimation
technique are stable in the sense that the local matrices in the bilinear form BK

in (5.9) remain uniformly well conditioned. Equivalently, we prove that they
satisfy the inf-sup condition uniformly.

Theorem 5.3. The bilinear form BK : N 2
2 (K) × N 2

2 (K) → R satisfies the
inf-sup condition uniformly in K; namely there is a positive constant h0 such
that for any non-degenerate K ∈ Th with diam K < h0 and any u ∈ N 2

2 (K)

sup
v∈N 2

2 (K)

BK(u,v)

‖v‖curl,K
≥ min{1

2
, k2}‖u‖curl,K .

To prove this theorem we first give the explicit expression of the bilinear form
BK in terms of the original basis functions. Using (5.12) we obtain that for any

v =
∑8

i=1 viφi ∈ N 2
2 (K)

(v,v)K = (

8∑

i=1

viφi,

8∑

j=1

vjφj)K

= |det dDK |((dD−1
K )T

8∑

i=1

viφ
0
i , (dD−1

K )T
8∑

j=1

vjφ
0
j )K̂ .

(5.16)

Using (5.12) one can easily prove (see [73], Corollary 3.58) that

curlx,y,zφj =
1

det dDK
dDKcurlξ,η,ζφ

0
j , j = 1, 2, . . . , 8. (5.17)

Therefore,

(curl v, curl v)K = (curlx,y,z

8∑

i=1

viφi, curlx,y,z

8∑

j=1

vjφj)K (5.18)

=
1

|det dDK | (dDKcurlξ,η,ζ

8∑

i=1

viφ
0
i ,dDKcurlξ,η,ζ

8∑

j=1

vjφ
0
j )K̂ .

We also use the following two lemmas:
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Lemma 5.4. Let us denote with T 1
h a non-degenerate family of tetrahedra such

that det dDK = 1 for all K ∈ T 1
h . Then there is a compact set D ⊂ R3×3 such

that 0 6∈ D and dDK ∈ D for all K ∈ T 1
h .

Proof We use the notion of the spectral norm which is given for an arbitrary
matrix D ∈ Rn×n as

‖D‖sp = sup
|ξ|=1

|Dξ|. (5.19)

We can establish the lemma if we prove that there are positive constants C1, C2

such that for any K ∈ T 1
h the following inequality holds:

C1 ≤ ‖dDK‖sp ≤ C2. (5.20)

Then the set

D = {dDK : K ∈ T 1
h }

is closed, and bounded with respect to the spectral norm (which is equivalent
with any norm in R3×3), moreover, the condition det dDK = 1,∀ K ∈ T 1

h im-
plies that 0 6∈ D.

Note that the condition detdDK = 1 implies that the volume of any tetrahedron
K is the same as that of K̂.

Indirectly, assume first that there is no constant C2 in (5.20), i.e. there is a
sequence Kn such that ‖dDKn

‖sp > n. Then according to Lemma 5.10 in [73]

n < ‖dDKn
‖sp ≤ hKn

ρK̂

,

where hKn
= diam Kn and ρK̂ denotes the radius of the largest ball contained

in the reference element K̂. Then limn→∞ hKn
= ∞ while the condition on

the volume implies that ρKn
remains bounded. This contradicts to the non-

degenerate property of the meshes.

Assume now that there is no positive lower bound C1 in (5.20). Then according
to (5.19) there is a sequence Kn such that

max |eig dDKn
| ≤ ‖dDKn

‖sp = sup
|ξ|=1

|dDKn
ξ| <

1

n
, (5.21)

where eig denotes an eigenvalue. Since the determinant is the product of the
eigenvalues, this is again a contradiction. ¥
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Lemma 5.5. For any C > 0 there is a positive number h0 ∈ R+ such that for
every non-degenerate tetrahedron K ∈ Th with diam K ≤ h0 and u2 ∈ N 2

2 (K)
with u2⊥ ker curl the following inequality holds:

(curl u2, curl u2)K ≥ C(u2,u2)K . (5.22)

Proof: First, we decompose the transformation DK as follows: DK = DKD̃−1
K ◦

D̃K , where

D̃K =
1

3
√

det dDK

DK : K̂ → K̃ (5.23)

and
DKD̃−1

K = 3
√

det dDKI : K̃ → K, (5.24)

where the corresponding matrices are denoted with dDK , dD̃K and dDKdD̃−1
K ,

respectively, and det dD̃K = 1.

For a function u2 =
∑8

i=1 u2,iφ
0
i ∈ {span φ0

j}j=1,...,8 we define

ũ2 : K̃ → R
3 with ũ2 =

8∑

i=1

u2,iφ̃i,

where the basis functions φ̃i : K̃ → R3 (i = 1, 2, . . . , 8) are defined using (5.12)
with the transformation D̃K instead of DK . Using (5.16) for the linear mapping
DKD̃−1

K we obtain that

(u2,u2)K = |det dDK | 1

( 3
√

det dDK)2
(ũ2, ũ2)K̃ (5.25)

and using (5.18) gives that

(curl u2, curl u2)K =
1

|det dDK | (
3
√

det dDK)2(curl ũ2, curl ũ2)K̃ . (5.26)

Using then (5.16) and (5.18) and the transformation formula (5.12) we obtain

that for u2 =
∑8

i=1 u2,iφ
0
i ∈ {spanφ0

j}j=1,...,8∩ker curl⊥ (which can be identified

with the coefficients u2,i) and dD̃K ∈ R3×3 the mapping of type R8×R3×3 → R

defined by

[u2,dD̃K ] → (curl ũ2, curl ũ2)K̃

(ũ2, ũ2)K̃

(5.27)

is a continuous function of type R8 × R3×3 → R+. We may assume that it
is given only on the unit sphere of R8, since λu2 and u2 result in the same
values in (5.27). In this way, the mapping in (5.27) is given on a compact set,
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see Lemma 5.4. Therefore its infimum equals to its minimum, which should be
positive. Using this with the relations in (5.25) and (5.26) we obtain that for
any dDK ∈ R3×3 and (u2,1, u2,2, . . . , u2,8) ∈ R8

0 < c̃ ≤ (curl ũ2, curl ũ2)K̃

(ũ2, ũ2)K̃

= ( 3
√

det dDK)2
(curl u2, curl u2)K

(u2,u2)K
. (5.28)

Obviously, (curl u2, curl u2)K ≥ c̃

( 3
√

det dDK)2
(u2,u2)K , and det dDK → 0 as

the diameter of K converges to zero, then for some h0 we will have
c̃

( 3
√

det dDK)2
≥ C

in (5.22), which proves the lemma. ¥

Proof of Theorem 5.3: Decompose u ∈ N 2
2 (K) as u = u1+u2, where curlu1 = 0

and u2⊥ ker curl. Then, for a given u choose v = u1 − u2 and with this

|BK(u,v)| = | − (curl u2, curl u2)K − k2(u1 + u2,u1 − u2)K |
= |(curl u2, curl u2)K − k2(u2,u2)K + k2(u1,u1)K |.

(5.29)

On the other hand,

‖u‖curl,K‖v‖curl,K = ‖u1 + u2‖curl,K‖u1 − u2‖curl,K

= (‖u1‖2
curl,K + ‖u2‖2

curl,K)
1
2 (‖u1‖2

curl,K + ‖u2‖2
curl,K)

1
2

= ‖u1‖2
curl,K + ‖u2‖2

curl,K

= (curl u2, curl u2)K + (u2,u2)K + (u1,u1)K . (5.30)

Using Lemma 5.5 with C = 2k2 +1 there is an h0 > 0 such that for any K with
diam K < h0

(curl u2, curl u2)K − k2(u2,u2)K

≥ 1

2
(curl u2, curl u2)K + (k2 +

1

2
)(u2,u2)K − k2(u2,u2)K

=
1

2
((curl u2, curl u2)K + (u2,u2)K).

Inserting this into (5.29) and using (5.30) we obtain that for every K, with
diam K < h0, that

|BK(u,v)| ≥ (curl u2, curl u2)K − k2(u2,u2)K + k2(u1,u1)K

≥ min{1

2
, k2}((curl u2, curl u2)K + (u2,u2)K + (u1,u1)K)

= min{1

2
, k2}‖u‖curl,K‖v‖curl,K .
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Summarized, there is a h0 > 0 such that for any non-degenerate tetrahedron K
with diam K < h0 and for an arbitrary u ∈ N 2

2 (K) one can find v ∈ N 2
2 (K)

such that

|BK(u,v)| ≥ min{1

2
, k2}‖u‖curl,K‖v‖curl,K .

Dividing both sides with ‖v‖curl,K gives the statement of the theorem. ¥

5.4.1 Dependence of the estimates on the wave number

We can sharpen the result of Theorem 5.3 further and compute the dependence
of the critical mesh size h0 on the wavenumber k. Accordingly, we use the
notation BK,α for the bilinear form on H(curl,K) × H(curl,K) with

BK,α(u,v) = (curl u, curl v)K − (αk)2(u,v)K ,

where α > 1 is a given parameter.

Lemma 5.6. Assume that Theorem 5.3 holds for the wavenumber k with the
constant h0. Then for any K ∈ Th with diam K < 1

αh0, any α > 1 and any
u ∈ N 2

2 (K) we have for the wave number αk the inf-sup condition

sup
v∈N 2

2 (K)

BK,αk(u,v)

‖v‖curl,K
≥ min{1

2
, k2}‖u‖curl,K (5.31)

Proof We use (5.16) and (5.18) in the case when K̃ is a tetrahedron with
diam K̃ < h0 and Dα : K̃ → K is defined by Dα = 1

αI.

sup
v∈N 2

2 (K)

BK,α(u,v)

‖v‖curl,K
= sup

v∈N 2
2 (K)

(curl u, curl v)K − (αk)2(u,v)K

‖v‖curl,K

= sup
ṽ∈N 2

2 (K̃)

α(curl ũ, curl ṽ)K̃ − 1
α (αk)2(ũ, ṽ)K̃

√

α(curl ṽ, curl ṽ)K̃ + 1
α (ṽ, ṽ)K̃

≥ √
α sup

ṽ∈N 2
2 (K̃)

(curl ũ, curl ṽ)K̃ − k2(ũ, ṽ)K̃

‖ṽ‖curl,K̃

≥ min{1

2
, k2}√α

√

‖curl ũ‖2
[L2(K̃)]3

+ ‖ũ‖2
[L2(K̃)]3

= min{1

2
, k2}√α

√

1

α
‖curl u‖2

[L2(K)]3 + α‖u‖2
[L2(K)]3

= min{1

2
, k2}

√

‖curl u‖2
[L2(K)]3 + α2‖u‖2

[L2(K)]3 ≥ min{1

2
, k2}‖u‖curl,K ,

where (5.16) and (5.18) were applied in the second line, Theorem 5.3 in the
fourth line and again (5.16) and (5.18) in the fifth line. ¥
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Lemma 5.6 shows that for the inf-sup condition we only need that kh is smaller
than some positive constant.

Using Lemma 5.6 and some results in [66] we can prove the k-dependence of the
constant C on the right hand side of (5.15).

Proof of Theorem 5.2: According to Theorem 4.16

‖êh‖2
curl,K ≤ C2

1C2((1+k2)2‖êh‖2
curl,K +h2‖r̄−r‖2

[L2(K)]3 +h‖R̄−R‖2
[L2(K)]3),

where C2 does not depend on h and k, and C1 = 1
min{ 1

2 ,k2} is the inverse of the

constant in the inf-sup condition. For wave numbers k ≥
√

1
2 we obtain C2

1 = 4.

The proof was carried out for rectangular elements in Chapter 4, see also [66],
but it is applicable also for tetrahedral elements if Section 4.4 is changed accord-
ingly. This requires a standard bubble function technique which only uses the
non-degenerate property of the mesh. We omit this straightforward but lengthy
analysis. ¥

5.5 Computational costs

For numerical simulations it is not only important to have an accurate but also
an efficient algorithm. We show that an adaptation technique based on the
implicit a posteriori error estimator developed in this chapter is more efficient
than the global refinement technique. In all numerical experiments the linear
systems associated with (5.6) are solved with the MINRES iterative solver using
diagonal preconditioning, see e.g. [52, 92, 103].

The computational work of the adaptive finite element solution on each mesh,
denoted by meshi, consists of the following steps:

• E flops for the element-wise computation of the implicit error estimate on
the mesh meshi,

• Qa flops for the solution of the linear system for the Maxwell equations
on the adapted mesh using MINRES,

• M flops for the mesh generation to obtain the next adapted mesh meshi+1.

The overall computational work associated with the implicit a posteriori error
estimator is:

Wc = Qa + E + M.
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The required computational work on the globally refined mesh of meshi is de-
noted by Wf flops. It mainly consists of the work required for the solution of
the linear system resulting from the discretization of the Maxwell equations on
this globally refined mesh. The aim is to compare the two quantities Wc and Wf .

In all our numerical experiments we have observed that for each tetrahedral
finite element mesh the following relation between the number of elements (N)
and the number of the edges (Ne) holds:

1.2 · N ≈ Ne.

Provided that this relation holds and that after global refinement of mesh meshi

each element in the mesh is subdivided into 8 elements, the size of the matrix
on the globally refined mesh is 8 times larger than on the mesh meshi. As
was observed experimentally, the computational work required for solving a
linear system of equations of size M × M with the MINRES iterative solver is
approximately Co · M2, with the constant Co independent of the finite element
mesh. This means that the computational work required to solve the linear
system of equations on the globally refined mesh is approximately 82 times
more than on the mesh meshi. If we define the computational work required for
the solution of the linear system on the mesh meshi by Q0 using MINRES, then
the claimed work on the globally refined mesh is

Wf ≈ 64 · Q0.

For the implicit a posteriori error estimation on each element we have to solve
a small linear system of equations. The Gauss elimination method for an n× n
matrix with partial pivoting requires approximately 2

3 · n3 operations. The size
of the local matrices used for the implicit error estimation is 8×8, therefore the
required computational cost for solving the local linear systems is approximately
2
3 · 83 per element. Hence we obtain

E ≈ 2

3
· 83 · N ≈ 341 · N.

Based on the adaptation algorithm we allow a growth in the number of degrees of
freedom with a factor of at most 3.5, see equation (5.37), which means that the
size of the matrix for the finite element discretization of the Maxwell equations
on the adapted mesh meshi+1 is at most 3.5 times larger than on the previous
mesh meshi. It follows that the solution of the linear system on the adapted
mesh with MINRES will therefore require at most 3.52 = 12.25 times more
operations as compared to the operations on the mesh meshi, i.e.

Qa ≈ 12.25 · Q0.
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If we summarize the above information we obtain

Wc ≈ 12.25 · Q0 + 341 · N + M

≈ 12.25 · Q0 + 284 · Ne + M,

where the dimension of the matrix on the coarse mesh is Ne × Ne. The com-
putational work required for solving the linear system of equations with the
MINRES iterative solver on the mesh meshi is approximately Q0 ≈ Co · N2

e ,
then we obtain

Wc ≈ 12.25 · Co · N2
e + 284 · Ne + M.

It is realistic to assume that M ≪ Co · N2
e , and, hence, the dominant term in

the last expression is the computational work required for the solution of the
linear system resulting from the finite element discretization of the Maxwell
equations. Comparing the obtained estimates for Wc and Wf , we can easily
see that the computational work on the globally refined mesh requires approxi-
mately 64

12.25 ≈ 5.2 times more work than for the adaptive finite element solution.

In Section 5.7.1 the computational work in terms of CPU time of the adaptive
and global refinement algorithms are compared for the solution of the Maxwell
equations on a cylindrical domain.

5.6 Adaptive mesh generation

In this section we describe how to use the implicit a posteriori error estima-
tion technique in real applications. Let us define the exact error δK , which is
unknown in practice, and the implicit local error estimate (indicator) δ̂K on
element K by

δK = ‖E − Eh‖curl,K , δ̂K = ‖êh‖curl,K . (5.32)

Recall that Eh denotes the numerical solution of the Maxwell equations (5.1)
obtained by using the first order edge finite elements (see Section 5.2.1) and
that êh denotes the computed error with the implicit error estimator, defined
in (5.13), and solved with the help of the finite element space N 2

2 (K) (see Sec-
tion 5.3.2).

The exact global error δ and the implicit global error estimate δh can be obtained
as

δ =

(
∑

K∈Th

δ2
K

)1/2

, δh =

(
∑

K∈Th

δ̂2
K

)1/2

. (5.33)
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Accordingly, if we sum up the terms terms in (5.15), we obtain

δh ≤ C(1 + k2)δ,

where C does not depend on h and k.

For a given tolerance TOL we aim to construct a mesh Th such that

δh < TOL. (5.34)

There are several adaptation strategies to achieve this.

Strategy 1. In this strategy, proposed in [44], the algorithm tries to equidis-
tribute the local error over all elements of Th. Thus, we insist that for

all elements K in the tessellation Th the condition δ̂K ≈ TOL√
N

is satisfied,

where N denotes the total number of elements in the tessellation. Element
K in the mesh Th is marked for refinement if

δ̂K >
TOL√

N
.

Strategy 2. This algorithm is based on an area-weighted tolerance approach.
For the given element K denote by VK its volume. Then element K is
marked for refinement if

δ̂K > TOL

√

VK

VΩ
,

where VΩ is the volume of the domain Ω. This strategy coincides with
Strategy 1 if all the elements in the tessellation have the same volume.

Strategy 3. An alternative strategy for error balancing is to refine the element
K where the computed error estimate δ̂K exceeds a certain fraction of the
total (or maximum) estimated error [44].

Strategy 4. One can also choose to refine a given percentage of the elements
whose error indicator is the largest.

In [94] the authors study several adaptation strategies, such as fixed threshold,
error equidistribution and error density equidistribution strategies, but the fixed
fraction Strategy 4 appears to be the most useful, because in their experiments
the other strategies can lead to an unacceptable decrease in the error reduction
rate or even to a stagnation or oscillatory behavior in the error reduction.

It is also argued in [44], that Strategy 4 is preferable compared to the other
algorithms. Therefore in the rest of this chapter mesh adaptation Strategy 4 is
used in all numerical experiments.
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5.7 Numerical results

In this section we demonstrate the performance of the implicit error estimator
(5.9) applied to the time harmonic Maxwell equations on a domain Ω ⊂ R3. In
this section we choose the wavenumbers such that we can get rid of the major
part of the pollution error [7]. Moreover, we expect that Theorem 5.2 provides
an accurate lower estimate of the error.

A good a posteriori error estimator should possess the following properties:

• The error estimator should be able to find those areas in the domain where
the finite element solution has a large error.

• The error estimator should have a magnitude close to the real error, both
locally and globally.

We verify the performance of the implicit error estimator for the Maxwell equa-
tions on five different test cases and define the effectivity index as

εh =
δh

δ
. (5.35)

This quantity merely reflects the quality of the global error estimate but is use-
ful to get an impression on the performance of the adaptive algorithm. For
any adaptive algorithm the local behavior of the error is, however, one of the
most important factors, therefore we evaluate the quality of the local error es-
timation by computing the correlation coefficient between {δi}N

i=1 and {δ̂i}N
i=1,

where δi ≡ δKi
and δ̂i ≡ δ̂Ki

are defined in (5.32).

Whenever the exact error δK is available we compute the correlation coefficient
[108] between the exact and estimated error as

r =

N

N∑

j=1

δj δ̂j −





N∑

j=1

δj









N∑

j=1

δ̂j





√
√
√
√
√



N
N∑

j=1

δ2
j − (

N∑

j=1

δj)
2







N
N∑

j=1

δ̂2
j − (

N∑

j=1

δ̂j)
2





. (5.36)

There is a strong correlation between {δi}N
i=1 and {δ̂i}N

i=1 if r ≥ 0.7

In the experiments described in this section, the initial mesh is denoted by
mesh0, and the subsequent adapted meshes are denoted by meshi, i = 1, 2, . . ..
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For adaptation we use the Centaur mesh generator [29] with the so called source
based mesh generation technique. In this method regions where the mesh gener-
ator should create finer elements are called sources, which in our case are taken
as spheres.

We organize the mesh adaptation as follows:

1. Initialize i = 0 and Nsmax.

2. Solve problem (5.1) on meshi and compute the implicit error estimate.
Stop if the error satisfies (5.34).

3. If the local error is almost homogeneously distributed over the elements
then stop the adaptation procedure and apply global refinement. Set
i = i + 1 and move to (2). Otherwise

4. Mark q% of the elements with the largest error in the current mesh meshi

for adaptation. Based on these marked elements generate at most Nsmax

sources.

5. Based on the created sources generate a new mesh and i = i + 1, then
move to (2).

Based on the created source information, a new mesh is generated by Centaur
such that

1.5 ≤ Ndof
i+1

Ndof
i

≤ 3.5, (5.37)

where Ndof
i is the number of degrees of freedom (DOF) in meshi. Algorithm 1

describes the mesh adaptation procedure in detail.

The value of q can vary between 1% − 20% and is highly dependent on the
mesh generation algorithm. In all our numerical experiments we have chosen
q = 1 and Nsmax = 15. The small value of q is explained by the fact that the
mesh generator Centaur creates meshes of high quality (no hanging nodes, no
large dihedral angles in an element). A larger value of q would result in a huge
increase in the number of elements compared to the previous mesh and would
not satisfy condition (5.37).

For the adaptation procedure it is also useful to have a lower bound for the
exact error. In Chapter 4 a lower bound for the exact error is provided in terms
of the implicit error estimate. This lower bound ensures that the resulting error
estimate is not a pessimistic overestimate of the exact error when the mesh size
is reduced.
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Algorithm 1 Algorithm to create sources for the mesh generation algorithm.

1: Nsmax = 15 and Ns = 0
2: Reorder the elements according to their corresponding error in descending

order. Nm = [ N
100 ]q - number of marked elements, N - number of elements

in the mesh
3: for i = 1, . . . Nm do
4: if Ns = 0 then
5: create a source with a center located in the barycenter of element i with

radius r = max(rs, ri), where rs = α · L with L being the domain size
and ri the radius of the circumsphere of element i. The parameter α
depends on the mesh generator and in all our numerical experiments
we choose α = 0.08.

6: Ns = 1
7: else
8: for j = 1, . . . , Ns do
9: if the barycenter of element i is inside source Nj then

10: do nothing, exit loop 8, go to loop 3
11: else
12: create a new source as described in step 5
13: Ns = Ns + 1
14: end if
15: if Ns = Nsmax then
16: STOP the algorithm
17: end if
18: end for
19: end if
20: end for

5.7.1 Cylindrical domain

In this subsection we test the adaptation method by solving the Maxwell equa-
tions on a section of a cylindrical domain shown in Figure 5.2 and defined as:

Ω = {(x, y, z) = (r cos(φ), r sin(φ), z) ∈ R
3 : 0 < r < 1, 0 < φ < 3π/2, 0 < z < 1},

with the wave number k = 1.

The solution of this problem has corner and edge singularities and can serve
as a suitable test case. The adaptation algorithm should be able to detect this
singular behavior and result in a denser mesh around the singularities.
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Figure 5.2: Section of the cylindrical domain.

Cylindrical domain with perfectly conducting boundary conditions

In order to be able to evaluate the true discretization errors we first choose
a test problem with a known analytical solution. We pick up a vector field
E = [E1, E2, E3], substitute it into the first equation of (5.1) and obtain the
corresponding right hand side function J and boundary conditions.
This test case is described in [79]. The exact solution of (5.1) is taken as

E = z(1 − z)(1 − r2)∇w, where w = r
2
3 sin(

2

3
φ). (5.38)

More specifically

E1 =
2

3
z(1 − z)(1 − x2 − y2)

sin(2
3 arctan y

x )x − cos( 2
3 arctan y

x )y

(x2 + y2)
2
3

,

E2 =
2

3
z(1 − z)(1 − x2 − y2)

sin(2
3 arctan y

x )y + cos( 2
3 arctan y

x )x

(x2 + y2)
2
3

,

E3 = 0.

This function E has a typical singular behavior along the z axis and does not
belong to H1(Ω). For a discussion of its regularity see [79].

For comparison purposes we also show the convergence of the error on glob-
ally refined meshes where the error is computed both using the implicit error
estimator and the analytic expression. The lines corresponding to the locally
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Table 5.2: Implicit error estimate δh, analytic error δ, effectivity index εh and
correlation coefficient r on the cylindrical domain with perfectly conducting
boundary conditions, see Section 5.7.1.

# edges # elements δh δ εh r
mesh0 1231 981 0.3503 0.2038 1.71 0.57
mesh1 2828 2259 0.1758 0.1268 1.38 0.80
mesh2 10541 8607 0.1090 0.0787 1.38 0.78
mesh3 17700 14550 0.0991 0.0708 1.39 0.80
mesh4 44247 36826 0.0695 0.0518 1.34 0.80

and globally refined meshes are labelled with a subscript loc and glob, respec-
tively. The numerical results and convergence plots are given in Table 5.2 and
Figure 5.3. It is clear from Figure 5.3 that adapted meshes, constructed by
the implicit error estimator, result in a smaller error than the globally refined
meshes with the same number of degrees of freedom. It is also important to note
that as the refinement procedure is continued the effectivity index remains con-
stant ε ≈ 1.3 and is close to one, which indicates that the error obtained from
the implicit error estimator is a good approximation of the true error. The cor-
relation coefficients in Table 5.2 indicate strong correlation, which means that
the local error predicted by the implicit a posteriori error estimation method is
very similar to the exact error distribution, see Figure 5.4. On the left hand side
of Figure 5.5 a contour plot of the implicit error estimate on the fourth adapted
mesh is given. The elements with larger error are mainly concentrated near the
singularity line along the z axis. The right hand side plot shows the correspond-
ing adapted mesh where, as we expected, the finer elements are created along
the singularity axis z.

Cylindrical domain with non-homogeneous tangential boundary con-
ditions

In (5.38), the factor z(1 − z)(1 − r2) in front of ∇w was used to satisfy the
perfectly conducting boundary conditions and appears to play a regularizing
role. In the following test case we solve the Maxwell equations with a non-
homogeneous tangential condition on the boundary of Ω, where the same domain
is used as in the previous example with the exact solution of the form

E = z∇w, (5.39)
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Figure 5.3: Convergence plot in loglog scale for the cylindrical domain test case
with perfectly conducting boundary conditions, see Section 5.7.1.

with w defined in (5.38). This function, as well as its curl, have the same regu-
larity as in the previous example [79].

The numerical results are given in Table 5.3 and the corresponding convergence
diagrams are shown in Figure 5.6. The sequence of meshes used in this experi-
ment are shown in Figure 5.8. We observe the same type of convergence for the
implicit error estimator and the exact error as in the previous test case 5.7.1. We
note that as the refinement procedure is continued the effectivity index remains
constant ε ≈ 0.8 which confirms the robustness of the method. The correlation
coefficient is also within the range of strong correlation which indicates a good
prediction of the local error behavior. The local error distribution diagram on
the final mesh (see Figure 5.9) is given in Figure 5.7. It clearly shows that the
local error distribution of both schemes has the same behavior throughout the
mesh. In Figure 5.9 a contour plot of the implicit error estimate on the final
mesh is given. As expected, the elements with larger error are concentrated
near the singularity line along the z axis.

To verify the work estimates discussed in Section 5.5 we plot in Figure 5.10
the exact global error δ versus the CPU time, both on globally and adaptively
refined meshes. It clearly shows that the adaptive algorithm is computationally
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Figure 5.4: Element-wise error distribution of the implicit error estimate and the
exact error on the fourth adapted mesh in the cylindrical domain with perfectly
conducting boundary conditions, see Section 5.7.1.

Table 5.3: Implicit error estimate δh, analytic error δ, effectivity index εh and
correlation coefficient r on the cylindrical domain with non-homogeneous tan-
gential boundary conditions, see Section 5.7.1.

# edges # elements δh δ εh r
mesh0 1231 981 0.2081 0.2209 0.91 0.68
mesh1 5219 4287 0.1286 0.1449 0.87 0.72
mesh2 10967 9018 0.0960 0.1156 0.83 0.78
mesh3 15277 12542 0.0922 0.1068 0.86 0.79
mesh4 26861 24853 0.0784 0.0936 0.83 0.80
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Figure 5.5: Distribution of the implicit error estimate on the fourth adapted
mesh (left) and the resulting adapted finite element mesh (right) in the cylin-
drical domain (cross section with x=y) with perfectly conducting boundary
conditions, see Section 5.7.1

more efficient than using globally refined meshes.

5.7.2 Fichera cube

The next test problem we consider are the Maxwell equations defined on a
Fichera cube Ω = (−1, 1)3 \ [−1, 0]3, with the wave number k = 1.

Fichera corner with non-homogeneous tangential boundary condi-
tions

In this test E = grad(r2/3 sin(2
3 t)), with r =

√

x2 + y2 + z2, t = arccos(xyz
r ).

More specifically

E1 = −2

3

(z3y + zy3) cos( 2
3 arccos( xyz√

x2+y2+z2
))

√

x2 + y2 + z2 − x2y2z2(x2 + y2 + z2)4/3
+

2

3

sin(2
3 arccos( xyz√

x2+y2+z2
))x

(x2 + y2 + z2)2/3
,
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Figure 5.6: Convergence plot in the loglog scale for the cylindrical domain test
case with non-homogeneous tangential boundary conditions, see Section 5.7.1.

E2 = −2

3

(zx3 + xz3) cos( 2
3 arccos( xyz√

x2+y2+z2
))

√

x2 + y2 + z2 − x2y2z2(x2 + y2 + z2)4/3

+
2

3

sin(2
3 arccos( xyz√

x2+y2+z2
))y

(x2 + y2 + z2)2/3
,

E3 = −2

3

(yx3 + xy3) cos( 2
3 arccos( xyz√

x2+y2+z2
))

√

x2 + y2 + z2 − x2y2z2(x2 + y2 + z2)4/3

+
2

3

sin(2
3 arccos( xyz√

x2+y2+z2
))z

(x2 + y2 + z2)2/3
.

This vector field has a singular behavior near the origin and it is clear that E

does not belong to [H1(Ω)]3.

In Table 5.4 the numerical results are given and the corresponding convergence
plots of the errors are shown in Figure 5.11. We observe that the error in the
adaptive algorithm requires a smaller number of degrees of freedom, when the
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Figure 5.7: Element-wise error distribution of the implicit error estimate and
the exact error on the fifth adapted mesh in the cylindrical domain with non-
homogeneous tangential boundary conditions, see Section 5.7.1.

implicit error estimation method is used to control the adaptation process, than
for the globally refined meshes. During the mesh adaptation procedure the ef-
fectivity index remains constant, which means that the error behavior of the
implicit error estimation technique is similar to that of the analytic error except
for a scaling factor. The correlation coefficients again indicate a strong correla-
tion which means that the local error behavior of the implicit a posteriori error
estimation method is very similar to the exact error. In Figure 5.12 a plot of the
local error on the third adapted mesh, both for the implicit error estimate and
the exact error, versus the element number is given. It also shows a clear cor-
respondence between the local error predicted by the implicit a posteriori error
estimation technique and the exact error. In the left hand side of Figure 5.13 a
contour plot of the implicit error estimate on the third adapted mesh is given.
The elements with larger error are mostly concentrated near the Fichera cor-
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Figure 5.8: Sequence of tetrahedral meshes based on the implicit error estima-
tor used on the cylindrical domain with non-homogeneous tangential boundary
conditions, see Section 5.7.1. Cross section with x = y.
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Table 5.4: Implicit error estimate δh, analytic error δ, effectivity index εh and
correlation coefficient r on the Fichera cube with non-homogeneous tangential
boundary conditions, see Section 5.7.2.

# edges # elements δh δ εh r
mesh0 930 710 0.1115 0.5558 0.20 0.70
mesh1 3377 2716 0.0665 0.3972 0.16 0.82
mesh2 9285 7588 0.0238 0.2436 0.096 0.74
mesh3 14923 12293 0.0124 0.1880 0.066 0.80
mesh4 30816 25642 0.0098 0.1485 0.066 0.72

ner. The right hand side plot shows the corresponding adapted mesh where, as
we expected, the smaller elements are located near the Fichera corner and its
neighborhood.

Note: The fact that the implicit error estimation technique predicts a signifi-
cantly smaller error in this test case than the exact error can be explained by
the fact that the exact solution is curl free. In this case when the curl of the
numerical solution is “nearly” zero, then the lower bound for the exact error
provided by Theorem 4.16 in Chapter 4 reduces to a pessimistic estimate for
the true error.

Fichera corner with perfectly conducting boundary conditions

In this test problem we consider the Maxwell equations on the same Fichera
cube but now with the perfectly conducting boundary conditions and a given
right hand side function

J =
1

d2
e−

(x−α)2+(y−α)2+(z−α)2

d2





cos(π(y − α)) cos(π(z − α))
cos(π(z − α)) cos(π(x − α))
cos(π(x − α)) cos(π(y − α))



 ,

where d = 0.5, α = 0.25.

For this problem the exact analytic solution is unknown, therefore the numeri-
cal results are presented only for the implicit error estimator, see Table 5.5 and
Figure 5.14.

It is clear that the adapted scheme using the implicit error estimation technique
produces a smaller error for the same number of degrees of freedom as compared
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Figure 5.11: Convergence plot in loglog scale for the Fichera cube test case with
non-homogeneous tangential boundary conditions, see Section 5.7.2.

to the error obtained on the globally refined meshes. The rate of convergence
of the implicit error estimator is also higher than that on the globally refined
meshes.

The large correlation coefficients observed in all our numerical experiments (of
course, except the last one) indicate that the error distribution predicted by
the implicit error estimator is very similar to the error distribution of the exact
error. This important property is obtained thanks to the proper choice of the
local basis used for the finite element solution of (5.9), which will be discussed
in Section 5.7.4.

5.7.3 Cylindrical domain with high wave number

It is a well known problem that for wave type equations with high wave numbers
the finite element solution provides a good approximation only under certain
restrictions on the finite element mesh size, see e.g. [7, 8]. For more details we
refer to [64] where for a range of numerical experiments the performance of a
finite element scheme is demonstrated for the 1-dimensional Helmholtz equation
with high wave numbers.

In this section we investigate the performance of the implicit error estimation
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Figure 5.12: Element-wise error distribution of the implicit error estimate and
the exact error on the third adapted mesh used for the Fichera domain with
non-homogeneous tangential boundary conditions, see Section 5.7.2.

Table 5.5: Implicit error estimate δh on the Fichera cube with perfectly con-
ducting boundary conditions, see Section 5.7.2.

# edges # elements δh

mesh0 898 683 0.3586
mesh1 2874 2247 0.2410
mesh2 8574 6939 0.1584
mesh3 29689 24497 0.1302
mesh4 62575 51969 0.0943



148 Chapter 5: Adaptive methods using implicit error estimates

X
­1

0
1

Y

­1­0.500.51

Z

­1

­0.5

0

0.5

1

error: 1E­06 5E­05 0.00015 0.00032

X

­1

­0.5

0

0.5

1

Y
­1­0.500.51

Z
­1

­0.5

0

0.5

1

Figure 5.13: Distribution of the implicit error estimate on the third adapted
mesh (left) and the adapted finite element mesh of the fourth adapted mesh
(right) used on the Fichera domain with non-homogeneous tangential boundary
conditions, see Section 5.7.2. Cross section with x = 0.
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perfectly conducting boundary conditions, see Section 5.7.2.
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method developed in this chapter for the Maxwell equations with a high wave
number provided that the mesh contains a reasonable number of elements per
wave length, as indicated in Lemma 5.6. Otherwise, the mesh is too coarse to
represent the waves properly and the results will also be influenced by a signifi-
cant pollution error. Here we will only evaluate the performance of the implicit
a posteriori error estimator. The wave number decides the minimum number of
elements per wave length which determines the mesh size for a given domain and
is strongly influenced by the computer capacity. Moreover, on very fine meshes
with a high wave numbers one needs to apply special techniques for the solution
of the linear systems which are, however, beyond the scope of this chapter.

Let us consider the same cylindrical domain as in Section 5.7.1 with the exact
solution given by (5.39). The wave number is chosen to be k = 7 so that we
have two wavelengths (λ) in the domain:

λ =
2π

7
≈ 0.9.

We will demonstrate the performance of the implicit a posteriori error estima-
tion method on a sufficiently fine mesh and will show that the estimator is able
to detect the regions with a larger error.

Let us define the mesh size h on a finite element mesh to be the length of
the longest edge in the domain. The finite element mesh, constructed for this
example has 118602 tetrahedrons and 146943 edges in the domain with the mesh
size h = 0.12. The solution of the Maxwell equations and the application of the
implicit error estimation method on this mesh produced the following results
for the implicit error estimate, analytic error, effectivity index and correlation
coefficient, respectively:

δh = 0.0974, δ = 0.1619, ǫh = 0.60, r = 0.71. (5.40)

The effectivity index, correlation coefficient and the error distribution diagram,
shown in Figure 5.15, show that the implicit error estimation technique is able
to detect on elements with a relatively large error for a wave number k = 7 (2
wavelengths in the domain). This shows that the adaptive algorithm is also ap-
plicable for larger values of the wave number k, but this requires computational
meshes which are significantly larger than used in the test cases discussed in
this chapter and are beyond the present capabilities of our computers.
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Figure 5.15: Element-wise error distribution of the implicit error estimate and
the exact error on finite element mesh in the cylindrical domain with a wave
number k = 7.

5.7.4 Influence of the local basis on the implicit a poste-

riori error estimator

As is discussed in the previous sections, an improper choice of the local basis
used for the solution of (5.9) may result in a poor approximation of the exact
error. We would like to mention that for some simple test cases (not described
in this chapter) we have also implemented the implicit error estimation tech-
nique with first order Nédélec elements as a local basis for (5.9). The obtained
error distribution diagrams of this implicit error estimation method did, how-
ever, not describe the true error very well. Here we discuss the performance
of the implicit error estimation method on the test case described in Section
5.7.1 but now using the full second order Nédélec basis [93] for the solution of
(5.9). Compared to the basis used in the previous section we only add the linear
part of the second order Nédélec basis functions which results in a total of 20
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Table 5.6: Implicit error estimate δh, analytic error δ, effectivity index εh and
correlation coefficient r on the cylindrical domain with non-homogeneous tan-
gential boundary conditions, see Section 5.7.1. For the solution of (5.9) the full
second order Nédélec basis is used.

# edges # elements δh δ εh r
mesh0 1231 981 3.3382 0.2209 15.11 0.59
mesh1 5219 4287 4.2651 0.1449 29.41 0.59
mesh2 10967 9018 4.6682 0.1156 40.38 0.65
mesh3 15277 12542 5.4128 0.1068 50.66 0.65
mesh4 26861 24853 6.0435 0.0936 64.49 0.69

basis functions per element. This increases the computational work required for

the implicit error estimation with 203

83 = 15.625 times more than for the basis
functions used in our experiments, but also has a negative effect on the accuracy.

In Table 5.6 the numerical results of the implicit error estimation using the full
Nédélec second order basis in (5.9) are given.

The results from Table 5.6 show that the global error obtained with the implicit
error estimation method is now far from the exact error which results in large
numbers for the effectivity index. Moreover, on finer meshes the error of the
implicit estimator does not converge towards the real error, although the method
produced moderate correlation coefficients. This example also shows that both
the effectivity index and the correlation coefficient are important factors to judge
the quality of the error estimator.

5.8 Conclusions

We discussed an adaptive finite element method using tetrahedral Nédélec el-
ements applied to the Maxwell equations on three-dimensional domains. The
adaptation is based on the implicit error estimation technique described in this
chapter. We show that the local problems defined for the error equation are well
posed. The local problems are solved with a finite element method using second
order Nédélec elements without the linear basis functions. The method is tested
on various examples including non-convex domains and the results show a good
prediction of the true error, both locally and globally. Based on the theoretical
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analysis and the numerical results we conclude that the implicit error estima-
tion technique is a powerful method for the adaptive solution of the Maxwell
equations. We have also proposed a mesh adaptation algorithm suitable for
the Centaur mesh generation package. The algorithm creates adaptive meshes
without a drastic increase in the number of elements and generates high quality
meshes, i.e. without hanging nodes and no large dihedral angles in an element.

An interesting topic for future work will be the implementation of the implicit
error estimation method for the Maxwell equations with higher order Nédélec
elements. In that case an important challenge will be to find a suitable well
defined local basis for the error equation.



CHAPTER 6

Hamiltonian structure of the Maxwell equations and
compatible finite element discretizations

Energy conservation is a desirable property for numerical discretizations of the
Maxwell equations. The Stokes-Dirac structure considers the Maxwell equations
from a geometrical point of view using differential forms and provides a good
starting point to derive energy conservative discretizations. A central issue to
achieve this is the choice of variables. We show that Nédélec edge elements
for the electric and magnetic field, together with a leap-frog time integration
scheme, result in an energy conservative discretization of the Maxwell equations.
An important aspect of this discretization is that it also ensures the proper
transfer of energy between neighboring elements, which is a central topic in the
so called port-Hamiltonian formulation of the Maxwell equations.

6.1 Introduction

In many real life problems it is important to understand the behavior of electro-
magnetic waves which are described by the Maxwell equations. The mathemati-
cal foundation of the Maxwell equations is well developed and depending on the
problem one can formulate them in several ways. In particular, the Hamiltonian
formulation provides much insight into the geometrical structure of the Maxwell
equations. In this chapter we consider the three-dimensional time-dependent
Maxwell equations and focus on numerical discretizations which preserve the
mathematical structure of the Maxwell equations as much as possible, in par-
ticular their energy conserving properties.
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In [101] a general class of PDE’s is considered in terms of differential forms which
provides the right tool to analyze the geometrical structure of these equations.
An important issue in this context is to obtain a formulation which ensures that
the energy transfer through the interface between two interconnected domains
takes place in the correct physical way. For this purpose the notion of Dirac
structure is introduced which is defined on certain spaces of differential forms on
the spatial domain of the system and its boundary. Since the definition of the
Dirac structure is based on Stokes’ theorem it is called Stokes-Dirac structure.
Its construction emphasizes the geometrical content of the physical variables
involved by identifying them as differential k-forms for appropriate values of
k. The Stokes-Dirac structure relates to a power-conserving property, namely
the change of the interior energy is equal to the power supplied to the system
through its boundary. Due to this property it provides the essential framework
to obtain a so called port-Hamiltonian formulation [101].

The aim of this chapter is to solve the Maxwell equations numerically while
satisfying as many properties of the Stokes-Dirac structure at the discrete level
as possible. For the numerical solution of the Maxwell equations we employ
finite element methods which have proven to be a very useful technique to rep-
resent electromagnetic fields at a discrete level. In many applications the usual
Lagrangian or node-based finite elements are, however, not appropriate to rep-
resent the electromagnetic fields (see e.g. [18], Section 6.3, [97]) and they can
result in physically incorrect solutions.

In the last two decades a great deal of work has been done to overcome the prob-
lems arising from node-based elements. An important step forward was made by
J.-C. Nédélec [76, 77] who designed a new type of finite elements which describe
the electromagnetic field in a better way compared to existing methods. The
Nédélec elements have many attractive properties (e.g. automatic satisfaction
of the proper continuity requirements across the boundary between two differ-
ent materials) and are more closely related to the geometrical structure of the
Maxwell equations than Lagrangian elements. Nowadays, they are a common
technique in computational electromagnetics.

In order to preserve the Stokes-Dirac structure of the Maxwell equations as
much as possible at the discrete level we formulate the Maxwell equations in
terms of the electric and magnetic field fields and use Nédélec edge finite ele-
ments for the spatial discretization of these fields. We show that by this choice
of basis functions the energy transfer through the interface of two neighboring
elements takes place in a correct way. For the time discretization we apply the
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leap-frog symplectic time integration scheme which has nice geometrical proper-
ties, e.g. it conserves the discrete energy exactly in the absence of a source term.

This chapter is organized as follows: In Section 6.2 the notion of Dirac structure
is highlighted and Section 6.3 provides the main framework for the Stokes-Dirac
structure and port-Hamiltonian formulation for a general class of PDE’s. In
Section 6.4, a particular case of the Stokes-Dirac structure is considered which
reduces to the Maxwell equations. Then, in Sections 6.5 and 6.6, the variational
problem and the appropriate (discrete) functional spaces are considered for the
Maxwell equations. In Sections 6.7 and 6.8 we analyze the numerical properties
of the discrete scheme. Section 6.9 presents two ways to discretize the Hodge
operator which is used to compute the electric and magnetic flux densities. In
the last section the numerical method is verified on a model problem using an
unstructured tetrahedral finite element mesh.

6.2 Dirac structures

Many physical phenomena are described by energy conserving systems of par-
tial differential equations (PDE). Some of these equations fit into the concept
of a Dirac structure where the PDE’s are considered from a geometrical point
of view. Dirac structures are a generalization of symplectic and Poisson struc-
tures [101] and formalize power-conserving interconnections, thereby allowing
the Hamiltonian formulation of interconnected and constrained mechanical and
electrical systems.

In this section we briefly introduce some definitions and properties of Dirac
structures. For a detailed analysis we refer to [101].

Let F and E be real vector spaces whose elements are labelled as f ,̺, re-
spectively. We call F the space of flows, and E the space of efforts. The
product space P := F × E is assumed to be endowed with a scalar pairing
< ·|· >: F × E → R, formalizing the notion of power.

Definition 6.1. A map < ·|· >: P → R is called a scalar pairing if it is linear
in each argument and it is non-degenerate, that is, if < ̺|f >= 0, ∀̺ ∈ E
then f = 0 and if < ̺|f >= 0, ∀f ∈ F then ̺ = 0.

Definition 6.2. The space P is called a multi-dimensional (power) port, p =
(f ,̺) is called the vector of port variables. On P there exists a bilinear form
<<,>>: P × P → R defined as

<< (f1,̺1), (f2,̺2) >>:=< ̺1|f2 > + < ̺2|f1 > .
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Definition 6.3. A subspace D ⊂ P is called a Dirac structure if D = D⊥,
where ⊥ denotes the orthogonal complement with respect to the bilinear form
<< ·, · >>.

A direct implication of Definition 6.3 is that if D is a Dirac structure, then

0 =<< (f ,̺), (f ,̺) >>= 2 < ̺|f >, ∀(f ,̺) ∈ D, (6.1)

meaning that, if (̺,f) is a pair of power variables, then the condition (f ,̺) ∈ D
implies power conservation < ̺|f >= 0 of the Dirac structure.

This power conserving property (6.1) of a Dirac structure is the starting point
for a geometrical formulation of many power-conserving physical systems.

6.3 Stokes-Dirac structures

Let Z be an n dimensional smooth domain in Rn, with smooth n−1 dimensional
boundary ∂Z, representing the space of spatial variables.

Denote by DFk(Z) the space of differential k-forms on Z, k = 1, 2, . . . , n, and
by DFk(∂Z) denote the space of differential k-forms on ∂Z, k = 1, 2, . . . , n− 1.
For more information about differential forms we refer to [17, 57, 55]. There
exists a natural pairing between the linear spaces DFk(Z) and DFn−k(Z) and
is given by

< β|α >:=

∫

Z

β ∧ α, (6.2)

where β ∈ DFk(Z), α ∈ DFn−k(Z) and ∧ denotes the usual wedge product
of differential forms [55]. The pairing (6.2) is non-degenerate in the sense of
Definition 6.1.

Similarly, there exists a pairing between DFk(∂Z) and DFn−k−1(∂Z) given by

< β|α >:=

∫

∂Z

β ∧ α, (6.3)

where β ∈ DFk(∂Z), α ∈ DFn−k−1(∂Z).
Next, we define the following linear spaces

Fp,q : = DFp(Z) ×DFq(Z) ×DFn−p(∂Z), (6.4a)

Ep,q : = DFn−p(Z) ×DFn−q(Z) ×DFn−q(∂Z), (6.4b)

where p + q = n + 1, p, q ∈ N.
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Then the pairings (6.2) and (6.3) yield a non-degenerate pairing between the
spaces Fp,q and Ep,q. Symmetrization of this pairing yields the following bilinear
form on Fp,q × Ep,q:

<< (f1
p,f

1
q,f

1
b ,̺

1
p,̺

1
q,̺

1
b), (f

2
p,f

2
q,f

2
b ,̺

2
p,̺

2
q,̺

2
b) >>:= (6.5)

∫

Z

(
̺2

q ∧ f1
q + ̺2

p ∧ f1
p + ̺1

q ∧ f2
q + ̺1

p ∧ f2
p

)
+

∫

∂Z

(
̺1

b ∧ f2
b + ̺2

b ∧ f1
b

)
,

where

f i
p ∈ DFp(Z), f i

q ∈ DFq(Z),

̺i
p ∈ DFn−p(Z), ̺i

q ∈ DFn−q(Z),

f i
b ∈ DFn−p(∂Z), ̺i

b ∈ DFn−q(∂Z), i = 1, 2.

The spaces DFp(Z) and DFq(Z) of differential forms will represent the energy
variables of two different physical energy domains interacting with each other,
while DFn−p(∂Z) and DFn−q(∂Z) will denote the boundary variables whose
wedge product represents the boundary energy flow.

Example 6.4. For the Maxwell equations in R3 we have n = 3 and p = q = 2,
hence DFp(Z) = DF2(Z) and DFq(Z) = DF2(Z), being the space of the elec-
tric flux d and magnetic flux b densities, respectively. The space of differential
1-forms DF1(Z) is the correct space for the electric e and magnetic h fields, and
DF1(∂Z) denotes the electric e|∂Z and magnetic h|∂Z fields at the boundary.
Their wedge product is the Poynting vector e ∧ h.

Throughout this chapter lowercase bold face letters refer to differential forms
and uppercase bold face letters refer to vector fields (proxies).

Theorem 6.5 (van der Schaft and Maschke [101]). Consider Fp,q and
Ep,q as given in (6.4) with p + q = n + 1, and bilinear form << ·|· >> given
according to (6.5). Define the following linear subspace D of Fp,q × Ep,q as

D =

{

(fp,f q,f b,̺p,̺q,̺b) ∈ Fp,q × Ep,q|
[

f p

f q

]

=

[
0 (−1)rd
d 0

] [
̺p

̺q

]

,

[
f b

̺b

]

=

[
1 0
0 −(−1)n−q

] [
̺p|∂Z

̺q|∂Z

]}

, (6.6)

where |∂Z denotes restriction to the boundary ∂Z, r = pq + 1 and d denotes the
exterior derivative on differential forms. Then D = D⊥, that is, D is a Dirac
structure.
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A natural question is whether a Dirac structure defined on two domains with
a common boundary will be also Dirac structure on their union. The following
remark is very useful in the construction of a finite element discretization and
provides the correct physical condition to connect two neighboring domains
(elements).

Remark 6.6 ([101]). The spatial compositionality properties of the Stokes-
Dirac structure immediately follow from its definition. Let Z1 and Z2 be two
n-dimensional domains with boundaries ∂Z1 and ∂Z2, respectively, and share
a common face Γ = ∂Z1 ∩ ∂Z2. Then the Stokes-Dirac structures D1 and D2

defined on Z1 and Z2, respectively, compose to the Stokes-Dirac structure on the
domain Z1∪Z2 with boundary (∂Z1/Γ)∪(∂Z2/Γ) if we equate on Γ the boundary
variables f1

b (corresponding to D1) with −f2
b (corresponding to D2), or if we

reverse the orientation. The minus sign ensures that the power flowing into Z1

via Γ is equal to the power flowing out of Z2 via Γ. Besides, we have to equate
on Γ the boundary variables ̺1

b (corresponding to D1) with ̺2
b (corresponding to

D2).

6.3.1 Distributed-parameter port-Hamiltonian systems

The Hamiltonian formulation of physical systems strongly depends on the stored
energy in the system and describes the energy evolution with respect to the in-
coming and dissipated energy in the domain. There is a vast literature available
on Hamiltonian formulations of physical systems and we will only dwell upon
this subject briefly.

We follow the approach given in [101] to define the Hamiltonian of the system
(6.6). On a given domain Z let us consider a Hamiltonian density H (energy
per volume element)

H : DFp(Z) ×DFq(Z) × Z → DFn(Z). (6.7)

Then the Hamiltonian is defined as

H =

∫

Z

H, (6.8)

which is equal to the total energy.

Let xp, ∆xp ∈ DFp(Z) and xq, ∆xq ∈ DFq(Z), then under a weak smoothness
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condition on H we have

H(xp + ∆xp,xq + ∆xq) =

∫

Z

H(xp + ∆xp,xq + ∆xq, z) (6.9)

=

∫

Z

H(xp,xq, z) +

∫

Z

δpH ∧ ∆xp + δqH ∧ ∆xq

+ higher order terms in ∆xp,∆xq,

for certain differential forms δpH ∈ DFn−p(Z), δqH ∈ DFn−q(Z). Then the
total energy satisfies

dH

dt
=

∫

Z

δpH ∧ ∂xp

∂t
+ δqH ∧ ∂xq

∂t
. (6.10)

The differential forms
∂xp

∂t and
∂xq

∂t are the velocities of the energy variables xp

and xq, respectively, and are connected to the Stokes-Dirac structure by setting

fp = −∂xp

∂t , fq = −∂xq

∂t and ̺p = δpH, ̺q = δqH.

In order to indicate that the boundary variables are playing the role of con-
nection variables, which link the system to other systems and whose product
represents power, these models are called port-Hamiltonian systems.

Definition 6.7 ([101]). The distributed-parameter port-Hamiltonian system
in an n-dimensional domain Z, state space DFp(Z) × DFq(Z) (with p + q =
n + 1), Stokes-Dirac structure given by (6.6), and Hamiltonian H, is given as

[
fp

f q

]

=

[
0 (−1)rd
d 0

] [
̺p

̺q

]

,

[
f b

̺b

]

=

[
1 0
0 −(−1)n−q

] [
̺p|∂Z

̺q|∂Z

]

,

(6.11)
where r = pq + 1 and

fp = −∂xp

∂t
, f q = −∂xq

∂t
, ̺p = δxp

H, ̺q = δxq
H.

The variables (xp,xq) are called state variables.

A direct consequence of the Stokes-Dirac structure is:

Corollary 6.8. By the power conserving property (6.1) of a Dirac structure
it immediately follows that for any (fp,f q,f b,̺p,̺q,̺b) in the Stokes-Dirac
structure D the following power conserving relation holds true:

∫

Z

̺p ∧ fp + ̺q ∧ f q +

∫

∂Z

̺b ∧ f b = 0. (6.12)
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Using the notations from Definition 6.7 and the power-conserving property
(6.12) we obtain

Proposition 6.9. Consider the distributed-parameter system (6.11) with the
total energy H, given by (6.8) and stored in the domain Z, then

dH

dt
=

∫

∂Z

̺b ∧ f b, (6.13)

expressing that the increase of energy in the domain Z is equal to the power
supplied to the system through the boundary ∂Z.

For a detailed description of the model in the presence of external forces or
source terms we refer to [101].

6.4 Port-Hamiltonian formulation of the Maxwell

equations

In the previous sections we have discussed a general framework for energy con-
serving physical systems. Next, we will show that the Maxwell equations also
fit into this framework, thus providing an energy conserving physical system.

If we take in Definition 6.7, the space dimension n = 3 and p = q = 2, we obtain
the following set of equations:

[
fp

f q

]

=

[
0 −d
d 0

] [
̺p

̺q

]

,

[
f b

̺b

]

=

[
1 0
0 1

] [
̺p|∂Z

̺q|∂Z

]

. (6.14)

If we associate the flow variables (see Example 6.4) with

f q := −∂b

∂t
, fp := −∂d

∂t
,

and the effort variables with

̺q := h, ̺p := e, where e = δdH, h = δbH,

with the Hamiltonian of the system H defined on a domain Z ⊂ R3 as

H =
1

2

∫

Z

(d ∧ e + b ∧ h), (6.15)

and the state variables
(xq,xp) := (b,d),



6.4 Port-Hamiltonian formulation of the Maxwell equations 161

then it is straightforward to show that the port-Hamiltonian structure given by
(6.14) describes the Maxwell equations without source term, i.e.







−∂d

∂t

−∂b

∂t







=

[
0 −d
d 0

] [
e

h

]

,

[
f b

̺b

]

=

[
1 0
0 1

] [
e|∂Z

h|∂Z

]

. (6.16)

In the presence of a source term we have to modify the first matrix equation in
(6.16) into







−∂d

∂t

−∂b

∂t







=

[
0 −d
d 0

] [
e

h

]

+

[
j

0

]

, (6.17)

with the source term j ∈ DF2(Z).

In the presence of a source term j ∈ DF2(Z) the Maxwell equations can be
written as

∂b

∂t
= −de, on Z, (6.18a)

∂d

∂t
= dh − j, on Z. (6.18b)

In view of the energy conserving properties of port-Hamiltonian systems the
energy balance relation for the Maxwell equations is

dH

dt
= −

∫

∂Z

e ∧ h −
∫

Z

j ∧ e, (6.19)

which is known as the Poynting theorem.

To complete the Maxwell equations we consider only linear materials, therefore
the following constitutive relations must hold:

d = ε ⋆ e, b = µ ⋆ h, on Z, (6.20)

where the dielectric permittivity ε ∈ R3×3 and the magnetic permeability µ ∈
R3×3 are assumed to be space dependent positive definite tensors. The Hodge
star operator is denoted by ⋆ : DFp(Z) → DF3−p(Z).

6.4.1 The Maxwell equations with perfectly conducting

boundary conditions

The Maxwell equations (6.18) together with the constitutive relations (6.20)
uniquely define the electromagnetic fields if proper boundary conditions are
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given.

As a model problem we consider the Maxwell equations on a bounded domain
Ω ⊂ R3, i.e.

∂b

∂t
= −de, on Ω, (6.21a)

∂d

∂t
= dh − j, on Ω, (6.21b)

together with the constitutive relations

d = ε ⋆ e, b = µ ⋆ h, on Ω. (6.22)

The Maxwell equations (6.21) are complemented with perfectly conducting
boundary conditions, written as

tΓ(e) = 0, on Γ = ∂Ω, (6.23)

where tΓ denotes the trace operator of 1-forms on the boundary of the domain
Ω, for details see [57]. In terms of vector proxies the boundary condition (6.23)
is equivalent to

n × E × n = 0, on Γ = ∂Ω, (6.24)

where E is the vector proxy of the differential form e and n is the outward unit
normal vector at the boundary of Ω.

Remark 6.10. The energy balance relation (6.19) for the Maxwell equations
(6.21a)–(6.21b) with perfectly conducting boundary conditions (6.23) on the
whole domain (Z = Ω) reduces to the following form

dH

dt
= −

∫

Ω

j ∧ e. (6.25)

Remark 6.11. In view of Remark 6.6, the spatial compositionality properties
of the Stokes-Dirac structure of the Maxwell equations are preserved if on the
interface between two non-overlapping domains the traces of the 1-forms e and
h are continuous. One notes that this requirement is equivalent to the physical
condition that the tangential component of the electric and magnetic fields across
the interface between two subdomains must be continuous.

Later we will elaborate on this issue and see how to construct a numerical scheme
which can preserve the spatial compositionality properties of the Stokes-Dirac
structure of the Maxwell equations at the discrete level.



6.5 Variational formulation 163

6.5 Variational formulation

To derive the variational formulation of the Maxwell equations (6.21)–(6.22) we
will follow the approach of Hiptmair, see [57]. First, let us define the following
bilinear forms,

aε(u,v)Ω =

∫

Ω

εΥ1u · Υ1vdx, a1/µ(u,v)Ω =

∫

Ω

µ−1Υ2u · Υ2vdx,

(6.26a)

a1/ε(u,v)Ω =

∫

Ω

ε−1Υ2u · Υ2vdx, aµ(u,v)Ω =

∫

Ω

µΥ1u · Υ1vdx, (6.26b)

where u, v are forms of appropriate degree and Υi, with i = 1, 2, being the
vector proxy of the corresponding form.

Let us denote by Hel(e) the energy contained in the electric field within a
bounded domain Ω ⊂ R3. Since we consider only linear materials, Hel(e) is
a quadratic form, which arises from a symmetric positive definite linear form aε

by Hel(v) = 1
2aε(v,v) for all v ∈ DF1(Ω). Then the electric flux density d has

to satisfy ∫

Ω

d ∧ e′ = aε(e,e′), ∀e′ ∈ DF1(Ω). (6.27)

Similarly, the magnetic flux density b possesses the magnetic energy Hmag on
Ω. It is related to a symmetric, positive definite linear form a1/µ by Hmag(v) =
1
2a1/µ(v,v) for all v ∈ DF2(Ω). Then the magnetic field h has to fulfill

∫

Ω

h ∧ b′ = a1/µ(b, b′), ∀b′ ∈ DF2(Ω). (6.28)

Since the exterior product introduces a non-degenerate pairing, (6.27) and (6.28)
assign energies also to the fields h and d. Thus we may introduce symmetric,
positive definite linear forms aµ and a1/ε as

∫

Ω

b ∧ h′ = aµ(h,h′), ∀h′ ∈ DF1(Ω), (6.29)

and ∫

Ω

e ∧ d′ = a1/ε(d,d′), ∀d′ ∈ DF2(Ω). (6.30)

The material laws in variational form (6.27)–(6.30) can be combined with the
topological laws (6.21a)–(6.21b) and lead to the natural weak formulation of the
Maxwell equations.
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Testing equation (6.21a) with a 1-form h′ ∈ DF1(Ω) yields

∫

Ω

∂b

∂t
∧ h′ = −

∫

Ω

de ∧ h′. (6.31)

Application of Stokes’ integration by parts formula gives the following weak
formulation of (6.21a):

∫

Ω

∂b

∂t
∧ h′ = −

∫

Ω

e ∧ dh′ −
∫

∂Ω

e ∧ h′, (6.32)

which using (6.29) yields

aµ(
∂h

∂t
,h′) = −

∫

Ω

e ∧ dh′ −
∫

∂Ω

e ∧ h′. (6.33)

In the same way testing equation (6.21b) with a 1-form e′ ∈ DF1(Ω) and using
(6.27), we obtain following weak formulation of (6.21b):

aε(
∂e

∂t
,e′) =

∫

Ω

dh ∧ e′ −
∫

Ω

j ∧ e′. (6.34)

With the perfectly conducting boundary condition (6.23) the variational formu-
lation of the Maxwell equations reads:

Find an e ∈ DF1(Ω) and h ∈ DF1(Ω) such that for all e′,h′ ∈ DF1(Ω) the
following relations holds true:

aµ(
∂h

∂t
,h′) = −

∫

Ω

e ∧ dh′, (6.35a)

aε(
∂e

∂t
,e′) =

∫

Ω

dh ∧ e′ −
∫

Ω

j ∧ e′. (6.35b)

In the rest of this chapter we consider the numerical solution of (6.35). Our
aim is to design numerical schemes which can preserve the port-Hamiltonian
structure at the discrete level as much as possible.

In view of (6.27) and (6.29), the energy (6.8) of the Maxwell equations with
Hamiltonian (6.15) in the domain Ω can be written as

H =
1

2
(aε(e,e)Ω + aµ(h,h)Ω) . (6.36)
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6.6 Function spaces

The following Hilbert spaces are very important function spaces for the charac-
terization of the Maxwell equations.

The Hilbert space H(curl,Ω) is defined as

H(curl,Ω) = {u ∈ [L2(Ω)]3 : curl u ∈ [L2(Ω)]3},

and the Hilbert space H(div,Ω) is defined as

H(div,Ω) = {u ∈ [L2(Ω)]3 : div u ∈ L2(Ω)}.

The differential operators curl and div are understood in a distributional sense.

6.6.1 Discrete differential forms

In this section we will briefly discuss the discrete counterparts of differential
forms and show how they can be used to discretize the Maxwell equations.
First we introduce some definitions.

Definition 6.12 (Tessellation). A finite set of oriented subdomains of Ω is
called a tessellation, and denoted by T = {K}, if

1. Ω =
⋃

K∈T K, where for any domain K its closure is denoted by K,

2. for each K ∈ T , K is an open set,

3. if K1 and K2 are distinct elements of T , then K1 ∩ K2 = ∅,

4. each K is a Lipschitz domain

Definition 6.13. A tessellation T of a domain Ω is called conforming if
there are no hanging nodes in the tessellation. This means that for any two
neighboring elements K1,K2 ∈ T , such that K̄1 ∩ K̄2 6= ∅, any node of the
two elements belonging to their common face K̄1∩ K̄2 necessarily coincides with
some node of the other element, see Figure 6.1.

We restrict ourselves in this chapter to conforming tessellations with tetrahedral
elements which are very flexible for approximating complex geometries.

On the tetrahedral elements we define the following Whitney forms [107]. For a
given differential m-form u with (0 ≤ m ≤ 3) its first order vector proxy Υmu
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conforming nodes

1
2

KK

hanging node

1
K2K

Figure 6.1: Two dimensional example of conforming (left) and non-conforming
(right) elements.

on a given tetrahedron T reads

Υ0u(i) =λi, i = 1, 2, 3, 4, (6.37a)

Υ1u(i,j) =λi∇λj − λj∇λi, i < j, i, j = 1, 2, 3, 4, (6.37b)

Υ2u(i,j,k) =2(λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj), (6.37c)

i < j < k, i, j, k = 1, 2, 3, 4,

Υ3u(0,1,2,3) =1/Vol(T ), (6.37d)

where λi (i = 1, 2, 3, 4) are the barycentric coordinates of the tetrahedron T
and Vol(T ) is the volume of the element T . Higher order Whitney 1-forms are
given in Appendix 6.11.

We will show that the Whitney forms fit in a very natural way into the definition
of classical finite elements due to Ciarlet [31], see e.g. [6, 57, 88],

Definition 6.14 (Ciarlet). Let

• K ⊂ R3 be any domain (e.g. tetrahedron, hexahedron or prism),

• PK be a finite-dimensional space of functions defined on K,

• ΣK be a set of linear functionals defined on PK . These linear functionals
are called the degrees of freedom.

Then (K,PK ,ΣK) is called a finite element.

The degrees of freedom ΣK should be defined in such a way that for a given
value it uniquely defines a function from PK .

Definition 6.15. The finite element (K,PK ,ΣK) is said to be unisolvent if
specifying a value for each of the degrees of freedom in ΣK uniquely determines
a function in PK .
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The following definition is also important:

Definition 6.16. Let W be a space of functions. The finite element (K,PK ,ΣK)
is said to be W conforming if the corresponding global finite element space is a
subspace of W.

Table 6.1 summarizes the local spaces and degrees of freedom (DOF) for vector
proxies of tetrahedral elements with first order Whitney forms. It is clear that
the integrals of Whitney elements over l-facets (l = 0, 1, 2, 3) are linear func-
tionals on W l(T ) and serve as degrees of freedom.

Table 6.1: Local spaces and degrees of freedom for first order vector proxies
Whitney forms on a tetrahedron T with vertices a0, a1, a2, a3. Vertex indices
have to be distinct.

Local space Local DOF
W 0(T ) = {x 7→ a · x + b, a ∈ R3, b ∈ R} u 7→ u(ai)
W 1(T ) = {x 7→ a × x + b, a, b ∈ R3} u 7→

∫

(ai,aj)
u · ds

W 2(T ) = {x 7→ ax + b, a ∈ R, b ∈ R3} u 7→
∫

(ai,aj ,ak)
u · ndS

W 2(T ) = {x 7→ a, a ∈ R} u 7→
∫

T
udx

On a given tessellation T of a domain Ω the global finite element space of Whit-
ney l-forms is denoted by W l

h(Ω), l = 0, 1, 2, 3, such that W l
h(Ω)|T = W l(T ),

see Table 6.1.

It is observed that the Whitney 1- and 2-forms coincide with Nédélec edge and
face finite element basis functions [76, 77], respectively.

Let us emphasize that the Whitney 1-forms are H(curl,Ω) conforming, i.e.
W 1

h (Ω) ⊂ H(curl,Ω). Therefore W 1
h (Ω) is a suitable function space for a con-

forming discretization of the E and H fields.

In the rest of this chapter we only consider first order Whitney 1-forms for the
discretization of E and H fields. Then we have

W 1
h (Ω) = span{wj : j = 1, 2, . . . , Ne}, (6.38)

where wi is the first order edge basis function corresponding to the i-th edge
and Ne denotes the number of the edges in the tessellation T .

Remark 6.17. One can easily use higher order Whitney 1-forms for the dis-
cretization of the E and H fields. In this case all the formulas below remain
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unchanged and one only needs to replace the space W 1
h (Ω) with the corresponding

higher order space of Whitney 1-forms.

The space of discrete differential 1-forms on a tessellation T of the domain Ω
is denoted by DF1

h(Ω) ⊂ DF1(Ω) such that the vector proxy of any discrete
differential 1-form belongs to the space of Whitney 1-forms, i.e.

Υ1(DF1
h(Ω)) = W 1

h (Ω).

The basis function of DF1
h(Ω) corresponding the ith basis function of W 1

h (Ω) is
denoted by ωi such that Υ1(ωi) = wi and

DF1
h(Ω) = span{ωj}. (6.39)

We refer to a recent article [6] for a detailed construction of discrete differential
forms of higher order, in particular for DF1

h(Ω).

6.7 The Maxwell equations for E-H fields

On a given tessellation T of the domain Ω the discretized variational formula-
tion (6.35) reads:

Find an eh ∈ DF1
h(Ω) and hh ∈ DF1

h(Ω) such that for all e′,h′ ∈ DF1
h(Ω) the

following relations hold true:

aµ(
∂hh

∂t
,h′)Ω = −

∫

Ω

eh ∧ dh′, (6.40a)

aε(
∂eh

∂t
,e′)Ω =

∫

Ω

dhh ∧ e′ −
∫

Ω

j ∧ e′. (6.40b)

Now let us analyze the properties of the discrete system (6.40) and check how
well this discrete system fits into the framework of the port-Hamiltonian formu-
lation discussed in the previous sections.

6.7.1 Energy conservation

If we replace h′ with hh and e′ with eh in (6.40) and sum up, we obtain that
the discretized energy Hh corresponding to (6.36) and given by

Hh =
1

2
(aε(eh,eh)Ω + aµ(hh,hh)Ω) , (6.41)

satisfies the energy balance relation (6.25), i.e.

dHh

dt
= −

∫

Ω

j ∧ eh. (6.42)
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The system (6.40) reads in matrix form:

Mµ∂th = −Ke (6.43a)

Mε∂te = KT h − j̄, (6.43b)

where h and e are the expansion coefficients of the discretized fields hh and eh,
respectively, and

Mµ(i, j) = aµ(ωi, ωj)Ω, Mε(i, j) = aε(ωi, ωj)Ω, (6.44)

K(i, j) =

∫

Ω

ωi ∧ dωj . j̄(i) =

∫

Ω

j ∧ ωj . (6.45)

We note that the system (6.43) is written in such a form that if we apply a
symplectic time integrator [56, 87] with j = 0, then the time-discrete energy of
the numerical solution of (6.43) oscillates around the time-continuous energy,
which is defined as 1

2 (eT Mεe + hT Mµh). We conclude that in the absence of a
source term j = 0, the discretization of the Maxwell equations in the variational
form (6.40) using edge elements for the spatial discretization and a symplectic
integrator for the discretization in time, results in an energy conserving numer-
ical scheme on the domain Ω, which is one of the properties of the Hamiltonian
formulation, see (6.13).

6.7.2 Port-Hamiltonian structure of the Maxwell equa-

tions

One of the main features of the Stokes-Dirac structure is its spatial composition-
ality property, see Remark 6.6, which provides the physical conditions to obtain
the correct energy transfer between two neighboring domains with a common
interface.

The finite element method applied to the Maxwell equations results in a discrete
solution, therefore we need to check if the spatial compositionality properties
are also satisfied at the discrete level to ensure that the energy transfer through
internal faces takes place in the correct way, i.e. the energy flowing into the ele-
ment Z1 through a common interface Γ12 from a neighboring element Z2 should
be equal to the energy coming out of the element Z2 via the same interface.

If we replace h, h′ with hh and e, e′ with eh in (6.33) and (6.35b), respectively,
but applied on element K and use the relation DF1

h(K) ⊂ DF1(K), then the
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numerical solution satisfies on each element K ∈ T the following relations

aµ(
∂hh

∂t
,hh)K = −

∫

K

eh ∧ dhh −
∫

∂K

eh ∧ hh, (6.46a)

aε(
∂eh

∂t
,eh)K =

∫

K

dhh ∧ eh −
∫

K

j ∧ eh. (6.46b)

For the further analysis we need to consider how the energy transfer takes
place through the internal faces. Let us consider two neighboring elements
K1, K2 ∈ T with a common boundary Γ12 = K̄1 ∩ K̄2. If we denote by ei

h and
hi

h the restriction of the numerical solutions eh and hh of (6.40) on Ki, with
i = 1, 2, then the energy

∫

Γ12
e1

h ∧ h1
h flowing into the element K1 through Γ12

from element K2 should be equal to the energy −
∫

Γ12
e2

h ∧ h2
h coming out of

element K2 via the interface Γ12. In order to have the correct energy transfer
through this interface the numerical solution eh and hh should therefore satisfy:

∫

Γ12

e1
h ∧ h1

h = −
∫

Γ12

e2
h ∧ h2

h. (6.47)

To show that relation (6.47) holds true, we write it in its equivalent form in
terms of vector proxies, then (6.47) follows straightforwardly.

If we denote by Eh and Hh the vector proxies of eh and hh, respectively, and
Ei

h and Hi
h are the restriction of Eh and Hh on Ki, and ni is the outward unit

normal (note that n1 = −n2) at the interface of Ki, with i = 1, 2, then relation
(6.47) is equivalent to

∫

Γ12

n1 · (E1
h × H1

h) = −
∫

Γ12

n2 · (E2
h × H2

h). (6.48)

We have
∫

Γ12

n1 · (E1
h × H1

h) +

∫

Γ12

n2 · (E2
h × H2

h) =

=

∫

Γ12

n1 · (E1
h × H1

h − E2
h × H2

h)

=

∫

Γ12

(n1 × E1
h) · H1

h − (n1 × E2
h) · H2

h

(because edge elements are used n1 × E1
h = n1 × E2

h)

=

∫

Γ12

(n1 × E1
h) · (H1

h − H2
h)

=

∫

Γ12

E1
h · (H1

h × n1 − H2
h × n1)
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= 0.

(because edge elements are used H1
h × n1 = H2

h × n1)

If we sum up the equations (6.46a) and (6.46b) we obtain

aµ(
∂hh

∂t
,hh)K + aε(

∂eh

∂t
,eh)K = −

∫

∂K

eh ∧ hh −
∫

K

j ∧ eh. (6.49)

The energy stored in each element K is defined as

HK =
1

2
(aµ(hh,hh)K + aε(eh,eh)K) . (6.50)

Then (6.49) can be written as

dHK

dt
+

∫

∂K

eh ∧ hh +

∫

K

j ∧ eh = 0. (6.51)

We note that (6.51) is the discrete counterpart of the energy balance relation
(6.19) for the Maxwell equations on an arbitrary element K ∈ T .

If we sum up the equations in (6.51) for all elements K ∈ T and using the
relation (6.47), we obtain that all internal boundary contributions in (6.51)
sum up to zero, hence

dHh

dt
+

∫

∂Ω

eh ∧ hh +

∫

Ω

j ∧ eh = 0, (6.52)

where Hh is the total energy defined in (6.41). With the perfectly conducting
boundary conditions we have

∫

∂Ω
eh ∧ hh = 0, hence

dHh

dt
+

∫

Ω

j ∧ eh = 0. (6.53)

The relation (6.53) is a discrete counterpart of the energy balance relation given
by (6.25). It also shows that we can discretize the Maxwell equations, given by
(6.40), on each subdomain K and, since the interface relations are also satisfied
at the discrete level, we can assemble the subdomains to obtain a solution on
the complete domain which is also energy conservative.

6.8 Leap-frog time discretization

For the time discretization of system (6.43) we use the symplectic leap-frog
scheme, i.e.
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Mµ
hn+1/2 − hn−1/2

∆t
= −Ken (6.54a)

Mε
en+1 − en

∆t
= KT hn+1/2 − j̄n+1/2, (6.54b)

where ∆t is the time step and the superscripts refer to the time level. This
scheme is conditionally stable, see for example [90], with the stability condition

∆t ≤ 2
√

max(ψ)
=: CFL, (6.55)

where ψ is an eigenvalue of the amplification matrix M−1
ε KT M−1

µ K.

For the leap-frog scheme (6.54) in the absence of the source term j̄ the following
discrete energy Hn

h = (en)T Mεe
n + (hn−1/2)T Mµhn+1/2 for (6.43) is conserved

exactly [82], i.e.

Hn
h = const, n = 1, 2, . . . , n − 1, (6.56)

where the superscript n refers to the time level.

6.9 Computation of B and D fields

To complete the numerical solution of the Maxwell equations we have to calcu-
late the magnetic flux density B and the electric flux density D based on the
computed numerical solutions Eh and Hh. Below we present two approaches:
one is based on the discretization of Faraday’s and Ampere’s law, see (6.21a)
and (6.21b), respectively, and provides a globally divergence free magnetic flux
density Bh. The second approach is based on the variational formulation of the
constitutive relations (6.27)–(6.30), and requires each time step the solution of
a sparse linear system representing the global mass matrix associated with the
2-forms.

6.9.1 Globally divergence free B and D fields

The Maxwell equations (6.21) involve two conservation laws which we have not
been addressed yet. Provided that the initial magnetic flux density is diver-
gence free, then the magnetic flux density B satisfies the following divergence
constraint:

∇ · B = 0, on Ω. (6.57a)
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Similarly, the electric flux density D satisfies

∇ · D = ρ, on Ω, (6.57b)

where ρ is the charge density.

In some applications violation of the divergence constraints at the discrete level
results in non-physical solutions. After the numerical solution of (6.40) for the
Eh and Hh fields we aim to construct the discrete counterpart of the magnetic
flux density, denoted by Bh, and the electric flux density, denoted by Dh, such
that

∇ · Bh = 0, on Ω, (6.58a)

∇ · Dh = 0, on Ω. (6.58b)

Here we assume for simplicity that ρ = 0.

We follow the approach presented in [51] where the method is applied to the
time-harmonic Maxwell equations.

Thanks to the fact that the Whitney elements satisfy the discrete De Rham
diagram, i.e.

W 0
h (Ω)

∇−→ W 1
h (Ω)

∇×−→ W 2
h (Ω)

∇·−→ W 3
h (Ω)

we immediately obtain that ∇× Eh ∈ W 2
h (Ω) is a discrete 2-form.

From the Maxwell equations we have

∂B

∂t
= −∇× E, (6.59)

and discretize (6.59) as

Bn+1
h − Bn

h

∆t
= −∇× En

h. (6.60)

Then the discrete magnetic flux density is computed by

Bn+1
h = −∆t∇× En

h + Bn
h, (6.61)

or

Bn+1
h = −

n∑

m=0

∆t∇× Em
h + B0(x, y, z, t), (6.62)

where B0(x, y, z, t) is the initial magnetic flux density which should be diver-
gence free.
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Then it is straightforward to see, using the discrete De Rham diagram, that the
computed magnetic flux density Bn

h is also divergence free in the whole domain
Ω, i.e.

∇ · Bn+1
h = −

n∑

m=0

∆t∇ · (∇× Em
h )

︸ ︷︷ ︸

=0, on Ω

+∇ · B0(x, y, z, t) (6.63)

= ∇ · B0(x, y, z, t) = 0. (6.64)

This approach is, however, not very practical since we lose one order of accuracy
in Bh when computing the curl of Eh. In particular, for first order Whitney
elements this did not result in a convergent scheme.

6.9.2 Discrete Hodge operator

Let us note that the Whitney 2-forms are H(div,Ω) conforming, i.e. W 2
h (Ω) ⊂

H(div,Ω). Therefore W 2
h (Ω) is a suitable function space for a conforming dis-

cretization of the B and D fields. The discrete counterpart of the Hodge op-
erator, used to define the material laws, then can be used in the following way
to obtain the electric and magnetic flux density. We expand the fields e,h,d, b
with their appropriate discrete Whitney forms and introduce these into the
variational form (6.28) and (6.30) of the material laws, using the appropriate
Whitney forms also for the test functions. Then we obtain matrix equations for
the expansion coefficients:

M1/µb = Ch, (6.65a) M1/εd = Ce, (6.65b)

where the matrices M1/µ and M1/ε are real symmetric positive definite and are
associated with Whitney 2-forms, i.e.

M1/µ(i, j) = a1/µ(ηi, ηj)Ω, and M1/ε(i, j) = a1/ε(ηi, ηj)Ω,

where ηi’s are the proxies of discrete Whitney 2-forms given by (6.37c). The
coupling matrix C involves the exterior product of Whitney 1- and 2- forms and
is not regular, even not square, in general, i.e.

C(i, j) =

∫

Ω

ηi ∧ ωj .

6.10 Numerical experiments

In this section we check the convergence properties of the numerical scheme
(6.54) on an unstructured tetrahedral finite element mesh on a simple model
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problem.

For this purpose let us consider the Maxwell equations (6.21)-(6.22) on the unit
cube Ω = (0, 1)3 with the perfectly conducting boundary conditions

n × E = 0, on Γ = ∂Ω.

The source term J is chosen such that the exact solution of the problem is given
by

E(x, t) = sin(ωt)





sin(πy) sin(πz)
sin(πx) sin(πz)
sin(πx) sin(πy)



 , (6.66)

B(x, t) =
cos(ωt)

ω





π sin(πx)
(
cos(πy) − cos(πz)

)

π sin(πy)
(
cos(πz) − cos(πx)

)

π sin(πz)
(
cos(πx) − cos(πy)

)



 . (6.67)

Using the constitutive relations (6.22) we obtain

D = εE, H =
1

µ
B. (6.68)

Finally, substituting (6.68) into the Ampere law (6.21b) and choosing the source
term J accordingly, results in

J : = ∇× H − ∂tD = cos(ωt)(
2π2

µω
− εω)





sin(πy) sin(πz)
sin(πx) sin(πz)
sin(πx) sin(πy)



 . (6.69)

The following values are used for this experiment: ε = µ = ω = 1.

To demonstrate the performance of the scheme, we start with an initial tetra-
hedral mesh, denoted by mesh1 (54 elements and 105 edges), generated by the
Centaur mesh generator [29]. The second mesh mesh2 (432 elements and 660
edges) is obtained by subdividing a tetrahedron of mesh1 into 8 smaller tetrahe-
drons (we call this procedure global refinement). Similarly, by global refinement,
we obtain mesh3 (3456 elements and 4632 edges) and mesh4 (27648 elements and
34608 edges), see Figure 6.6. On a given mesh we define the mesh size h to be
the longest edge in the mesh.

The system of space discretized Maxwell equations (6.43) is integrated numer-
ically using leap-frog scheme (6.54). The system is solved for the time interval
[0, T ], with T = 10. The time step ∆t is chosen depending on the finite element
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mesh according to the CFL restriction (6.55). More specifically, we perform the
stability analysis on the coarsest mesh mesh1 and compute the CFL time step
restriction. The time step for mesh1 is then chosen to be ∆t1 ≈ CFL

2 , more
specifically ∆t1 = 0.125. The time steps for the meshes meshi, i=2,3,4, are cho-
sen as ∆ti = ∆t1

2i , i = 2, 3, 4.

For a given vector field F and its numerical approximation F h we compute the
error in the following norms:

‖F − F h‖([L2(Ω×[0,T ])]3) :=

√
∫ T

0

∫

Ω

|F − F h|2, (6.70)

‖F (tn) − F n
h‖[L2(Ω)]3 :=

√
∫

Ω

|F − F n
h|2, (6.71)

where n is the time level and tn = n∆t. For the computation of the integrals
in space we use a four point Gauss quadrature rule and in time we apply the
Simpson quadrature rule.

A convergence diagram of the error for the E and H fields measured according
to (6.70) is given in Figure 6.2 in the loglog scale showing that the error de-
creases proportionably to h2. For the other convergence diagrams we will also
use the loglog scale.

An error convergence diagram for the E field evaluated at different time levels is
given in Figure 6.3 and an error convergence diagram for the H field evaluated
at the final time is given in Figure 6.5a. These results also show that second
order accuracy is obtained when using first order Whitney elements.

To compute the B and D fields we apply postprocessing, i.e. we use the rela-
tions (6.65) to compute these fields. The electric flux density D is computed by
solving a linear system given in (6.65b). Similarly, the magnetic flux density B

is computed via the relation (6.65a).

Error plots for the D field evaluated at different time levels is given in Fig-
ure 6.4 and an error plot for the B field evaluated at the final time is given in
Figure 6.5b.

We note that the postprocessing algorithm (6.65) for discretization of the Hodge
operator produces approximations for the electric flux density D and magnetic
flux density B which have the same order of accuracy as we obtained for the
electric E and magnetic H fields, respectively. The small differences in all the
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Figure 6.2: Top: Error in the electric field E and magnetic field H in the
[L2(Ω × [0, T ])]3 norm (6.70) versus number of elements Nel. Bottom: Error
versus mesh size.

convergence diagrams can be explained by the fact that the computations are
performed on unstructured meshes.

6.10.1 Energy conservation

In order to verify the discrete energy conservation given by (6.56) we apply the
leap-frog time integration scheme on the second finite element mesh denoted as
mesh2 with the source term j̄ = 0 and the initial conditions for e0 and h0 are
taken to be vectors with all the elements 1 and 0.5, respectively.

In Figure 6.7 we plot the error abs(Hn
h − H0

h) for all the time levels. It clearly
shows that the discrete energy remains constant up to 12 digits for all time
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Figure 6.3: Error of the electric field E in the [L2(Ω)]3 norm (6.71) versus mesh
size evaluated at different time levels.

levels.

6.11 Appendix

6.11.1 Higher order Whitney elements

A detailed derivation of higher order Whitney forms with their corresponding
properties on tetrahedral and hexahedral elements is given in [57]. It is out
of the scope of this chapter to go through the construction of these Whitney
forms, we rather give the vector proxies of second and third order Whitney 1-
forms, see for example [93]. These forms can be used directly in the numerical
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Figure 6.4: Error of the electric flux density D in the [L2(Ω)]3 norm (6.71)
versus mesh size evaluated at different time levels.

discretization discussed in this chapter to obtain a higher order accurate energy
conserving discretization of the Maxwell equations.

There are 20 second order Whitney 1-forms on a given tetrahedron:

12 edge based λi∇λj , for all i 6= j, (6.72)

8 face based λiλj∇λk − λiλk∇λj , (6.73)

λiλj∇λk − λjλk∇λi for all i < j < k. (6.74)
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Figure 6.5: Error of the magnetic field H (left) and the magnetic flux density
B (right) in the [L2(Ω)]3 norm (6.71) versus mesh size evaluated at the final
time.

The third order Whitney 1-forms on a given tetrahedron are:

18 edge based λi(2λi − 1)∇λj , for all i 6= j, (6.75)

λiλj(∇λi −∇λj), for all i < j, (6.76)

24 face based λi(2λi − 1)(λj∇λk − λk∇λj), (6.77)

λ2
i (λj∇λk − λk∇λj), for all i 6= j 6= k, (6.78)

3 cell based λ1λ2λ3∇λ4 − λ2λ3λ4∇λ1, (6.79)

λ1λ2λ4∇λ3 − λ2λ3λ4∇λ1,

λ1λ3λ4∇λ2 − λ2λ3λ4∇λ1.

Another derivation of higher order Whitney forms is given in [87].

6.12 Conclusions

In this chapter we have considered the discretization of the Maxwell equations
from a geometrical point of view. For this we used the formulation of the
equations in terms of differential forms which are a very convenient and natural
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Figure 6.7: Time evolution of the discrete energy error.

way to describe the Maxwell equations. We show that the spatial discretization
of the Maxwell equations with the Whitney 1-froms formulated for the electric
and magnetic fields preserves the correct energy transfer through the interfaces
of neighboring elements. For the time integration we use the symplectic leap-
frog scheme which results in an energy conservative discretization of the time-
dependent Maxwell equations. We investigated two postprocessing algorithms
for the discretization of the Hodge operator to obtain the electric and magnetic
flux densities. The direct discretization of the Hodge operator turned out to
be the most accurate procedure. Finally, the numerical method is verified on a
simple test case with tetrahedral elements, where second order error convergence
and energy conservation are shown for first order Whitney elements.



CHAPTER 7

Conclusions

The aim of this thesis is to develop efficient and accurate methods for the nu-
merical solution of the three dimensional Maxwell equations. In many real
life problems one needs to solve the time-dependent Maxwell equations on a
complicated domain where unstructured finite element meshes are necessary to
approximate the geometry accurately. In such situations classical time integra-
tion methods usually require a small time step to obtain a stable numerical
scheme. In order to relax this severe restriction on the time step the Gautschi
time integration scheme is considered in Chapter 3. This scheme involves a
special matrix function which provides excellent wave resolution properties and
unconditional stability of the scheme. To efficiently compute this expression
the Krylov subspace method is applied and we propose a simple algorithm as
stopping criterion on the Krylov subspace dimension. The dispersion and dis-
sipation properties of the Gautschi scheme are analyzed on cubic elements and
compared with classical time integration methods. The Gautschi time integra-
tion method was verified on several test cases and we show that it results in a
more efficient scheme on unstructured meshes than several well known explicit
time integration methods (e.g. leap-frog) which suffer from a severe time step
restriction.

In many physical applications the solution of the Maxwell equations contains
singularities for instance on non-convex domains. Adaptive methods are an in-
dispensable tool to solve these problems efficiently. Therefore an accurate error
estimator is required. Residual based a posteriori error estimators contain un-
known coefficients and are generally not sharp for the Maxwell equations. A
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better alternative is provided by implicit error estimators. In Chapter 4 an
overview of the method and a theoretical analysis is given. The well-posedness
of the local variational problems formulated for the error function is ensured as
the wave number is not an eigenvalue of the local problems. For cubic elements
we calculated the eigenvalues of the local bilinear form analytically. The method
is verified on several test problems with cubic elements and the results obtained
with the implicit error estimator show a very good prediction of the true error,
even for non-smooth solutions and non-convex domains.

Based on the theoretical background developed for the implicit error estimator
we have developed in Chapter 5 an h-adaptive refinement method using tetra-
hedral elements for the three-dimensional Maxwell equations. A proper finite
element basis is given for the solution of the local problems for the error func-
tion. The method is verified on various examples with non-convex domains and
the results show a good prediction of the true error, both locally and globally.
We have proposed a mesh adaptation algorithm suitable for the Centaur mesh
generation package. The adaptation algorithm creates meshes without a dras-
tic increase in the number of elements and generates high quality meshes, i.e.
without hanging nodes and large dihedral angles in an element.

In Chapter 6 we consider the Maxwell equations from a geometrical point of
view. First, we provide some theoretical background on the port-Hamiltonian
formulation of these equations, which basically describes the energy conserving
properties of the system. Then we show that the discretization of the Maxwell
equations formulated for the electric and magnetic fields using edge finite el-
ements obeys some important properties of the port-Hamiltonian structure of
the system. In particular, we show that at the discrete level the energy transfer
through the interelement boundaries takes place in the correct physical way. We
considered two algorithms for computing the electric and magnetic flux density,
D and B, respectively. The first algorithm is rather simple and provides a
globally divergence free solution for the B field. With this method one loses,
however, one order of accuracy and the method is not suitable for first order el-
ements. The second algorithm is based on the projection of the Hodge operator
on the appropriate discrete spaces. Although this approach is computationally
more expensive it provides the same order of approximation for D and B as
we obtained for the electric and magnetic fields. The method is verified on a
simple test case with unstructured tetrahedral meshes.
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Summary

The increasing demand to understand the behaviour of electromagnetic waves
in many real life problems requires solution of the Maxwell equations. In most
cases the exact solution of the Maxwell equations is not available, hence numer-
ical methods are indispensable tool to solve them numerically using different
methods. In this thesis we consider the Maxwell equation in time and frequency
domain, and for the space discretization we always apply Nédélec elements which
are correct basis to describe the electromagnetic waves.

For time dependent problems many classical time integration schemes on un-
structured meshes require very severe restriction on the time step, hence many
time steps are required to solve the problem. To relax the time restrictions while
preserving accuracy requirements a new Gautschi time integration scheme is ap-
plied to the Maxwell equations. The scheme involves a matrix-function evalua-
tion, which is computed by Krylov subspace methods. We develop a very simple
approach which adaptively chooses the dimension of the Krylov subspace. We
prove that the scheme is unconditionally stable and allows to choose time steps
larger than the smallest wave length.

In many problems the solution of the Maxwell equations contains structures
with limited regularity, such as singularities near corners and non-convex edges.
These complicated structures can be efficiently captured by adaptive methods,
where the finite element mesh is locally coarsened or refined. For the time-
harmonic Maxwell equations we develop an implicit a posteriori error estima-
tion technique. The idea of the method is to solve for the error function an
additional boundary value problem which provides a computable error. Then



this data can be easily used to identify the regions with larger error where re-
finement is required. The method is based on sound theoretical analysis and
various complicated numerical experiments come to validate the technique.

The original Maxwell equations represent a coupled set of partial differential
equations which can be formulated as a Hamiltonian system. The main char-
acteristic of Hamiltonian dynamics is its energy conserving properties. In this
thesis we show that discretization of the Maxwell equations for the electric and
magnetic fields with the edge elements preserves correct energy transfer through
the interfaces of neighboring elements. For time integrations the symplectic
leap-frog scheme is applied which has a discrete energy conserving properties.



Samenvatting

De groeiende behoefte om het gedrag van elektromagnetische golven, die van
belang zijn in veel practijk problemen, te begrijpen, vereist het oplossen van
de Maxwell vergelijkingen. In de meeste gevallen is een exacte oplossing van
de Maxwell vergelijkingen niet beschikbaar, daarom zijn numerieke oplostech-
nieken een onmisbaar gereedschap om discrete oplossingen te vinden. In deze
thesis beschouwen we de Maxwell vergelijking in het tijds- en frequentiedomein.
Voor de ruimtelijke discretisatie worden steeds Nédélec elementen toegepast.
Deze vormen een correcte basis om electromagnetische golven te beschrijven.

Wanneer klassieke tijds integratie schemas op ongestructureerde roosters worden
benut om tijdsafhankelijke problemen op te lossen, is er een strikte beperking
op de maximale tijdstap. Hierdoor zijn er veel tijdstappen nodig om het prob-
leem op te lossen. Om deze tijdstapbeperking te versoepelen en toch dezelfde
nauwkeurigheid te behouden, is een nieuw Gautschi tijdsintegratieschema toege-
past op de Maxwell vergelijkingen. Het schema vereist een matrixfunctie--
evaluatie, om deze te berekenen worden Krylov subspace methodes toegepast.
We ontwikkelen een eenvoudige aanpak om de dimensie van de Krylov subspace
adaptief te bepalen. We tonen aan dat het schema onconditioneel stabiel is, en
tijdstappen toelaat die groter zijn dan de kleinste golflengte.

In veel problemen bevat de oplossing van de Maxwell vergelijking structuren
met beperkte regulariteit, zoals singulariteiten in de buurt van hoeken en niet-
convexe randen. Deze ingewikkelde structuren kunnen efficient gevangen wor-
den met behulp van adaptieve methodes. Hierbij wordt het eindige elementen
rooster lokaal vergrofd of verfijnd. Voor de tijdsharmonische Maxwell vergeli-



jkingen ontwikkelen we een impliciete a posteriori foutafschattingsmethode.
De gedachte achter de methode is om voor de errorfunctie een extra rand-
waardeprobleem op te lossen, hierdoor is de fout uit te rekenen. Met deze
informatie kan eenvoudig worden bepaald in welke gebieden roosterverfijning
nodig is. De methode is gebaseerd op betrouwbare theoretische analyse en de
techniek is gevalideerd middels verscheidene gecompliceerde numerieke experi-
menten.

De originele Maxwell vergelijkingen omvatten een gekoppelde set partiele differ-
entiaalvergelijkingen, die ook als Hamiltoniaans systeem kunnen worden gefor-
muleerd. De voornaamste eigenschap van Hamiltoniaanse dynamica is de en-
ergie behoudendheid. In deze thesis laten we zien dat discretisatie van de
Maxwell vergelijkingen, voor het elektrisch en magnetisch veld, met behulp van
edge elementen, de juiste energie overdracht met naburige elementen behoud.
Voor de tijdsintegratie wordt een symplectic leap-frog schema toegepast, dit
geeft energie behoud op discreet niveau.


	Introduction
	Motivation
	Existing methods
	Finite difference time domain method
	Finite element methods
	Objectives
	Unconditionally stable scheme
	Adaptive methods
	Outline of this thesis
	General theory
	The Maxwell equations
	Material properties
	Dimensionless Maxwell equations
	Interface conditions
	Second order PDE for electric field
	Time-harmonic Maxwell equations
	Boundary conditions

	Finite elements in H(curl)
	 Weak formulation
	Definition of Finite Elements
	Nédélec edge elements on hexahedron
	Nédélec edge elements on tetrahedron
	The Gautschi time stepping scheme
	Introduction
	Maxwell equations
	Dimensionless Maxwell equations
	Weak formulation and finite element discretization

	Time stepping schemes
	Leap frog scheme
	Gautschi cosine scheme
	Formulation of Gautschi cosine scheme
	LLC scheme
	One-step formulations of the three schemes

	Analysis of the Gautschi-Krylov scheme
	Krylov subspace approximation error
	Stopping criterion for the Arnoldi process
	Stability of the Gautschi-Krylov scheme

	Dispersion Analysis
	Gautschi method
	Leap frog scheme
	LLC scheme

	Numerical experiments
	Test problem 1
	Test problem 2
	The Krylov subspace dimension and the time error
	Computational work
	Comparisons of the three schemes

	Conclusions and suggestions for future research
	APPENDIX
	Stability of the leap frog scheme
	Dispersion relation matrices F and G



	Implicit error estimates
	Introduction
	Mathematical formalization
	Finite elements in H(curl): Edge elements
	Implicit error estimation
	Formulation of the local problem
	Numerical solution of the local problem
	Analysis of implicit error estimation
	The eigenvalue problem for the time-harmonic Maxwell equations with natural boundary conditions
	Eigenvalues in a rectangular domain
	Implicit error estimate as a lower bound of the error
	Bubble functions
	Lower bound for the computational error in terms of the residuals

	Numerical results
	Test cases
	Comparisons with some existing schemes


	Conclusions and further works

	Appendix
	
	Adaptive methods
	Introduction
	Mathematical formalization
	Edge finite elements on tetrahedron
	Implicit error estimation
	Formulation of the local error equation
	Numerical solution of the local error equation

	Inf-sup condition
	Computational costs
	Adaptive mesh generation

	Numerical results
	Cylindrical domain
	Fichera cube
	Influence of the local basis

	Conclusions
	Bibliography









